Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (19): 4119-4130.doi: 10.3864/j.issn.0578-1752.2013.19.018

• HORTICULTURE • Previous Articles     Next Articles

Differential Genes Expression in Tea Plant (Cameilla sinensis L.) Induced by Ectropis oblique Feeding Based on cDNA-AFLP

 CAO  Shi-Xian, CHENG  Xi, JIANG  Zheng-Zhong, SHENG  Liang, SHANG  Guan-Ming-Zhu, DENG  Wei-Wei, WEI  Chao-Ling   

  1. College of Tea & Food Science and Technology, Anhui Agricultural University/Ministry-State Key Laboratory Breeding Base of Tea Biochemistry & Biotechnology/Key Laboratory of Tea Plant Biology & Tea Processing, Ministry of Agriculture, Hefei 230036
  • Received:2013-04-15 Online:2013-10-01 Published:2013-06-04

Abstract: 【Objective】 The objective of this study is to screen the defense genes in tea plant (Camellia sinensis L.) induced by tea looper (Ectropis oblique).【Method】Tea leaves fed by the looper were analyzed by cDNA-AFLP(cDNA-amplified fragment length polymorphism). Transcript-derived fragments (TDF) were screened and confirmed. After that, bioinformatics analysis was followed. And the expression patterns of the differential genes were performed by qRT-PCR.【Result】The results showed that 134 EST(expressed sequence tags) were obtained by sequencing and identifying from the selected 231 TDFs. Among them, 81 TDFs were up-regulated, and 53 were down-regulated, which accounted for 60.4% and 39.6% of the obtained fragments, respectively. According to BLASTx result of TDFs, a large group (23.1%) of these genes shared high homology with genes involved in metabolism, 9.0% genes with functions related to photosynthesis and energy, 8.2% genes with functions related to protein synthesis and storage, signal transduction, 5.2% genes with functions related to disease/defense. But only few genes involved in cell growth and structure, transcription factor and transporters and the ratios were 1.5%, 2.2%, and 3.0%, respectively. Moreover, sequences with unknown proteins occupied 6.7%; and 20.1% sequences with no similarity against the database. TDF-21F1, TDF-22D, TDF-27L3 and TDF-28F were confirmed by qRT-PCR analysis, further result indicated that the expression of the defense genes responsive to Ectropis oblique play significant regulation roles in adapting to negative environment for tea plant.【Conclusion】Using cDNA-AFLP method to analyze Ectropis oblique feeding tea plant and get the TDFs, it could supply valuable information to the study of the molecular mechanism between tea and pest.

Key words: Camellia sinensis , Ectropis oblique , feeding-induced , cDNA-AFLP , defense mechanism

[1]韦朝领, 高香凤, 江昌俊, 叶爱华. 基因表达谱差异显示技术及其在植物对害虫取食诱导反应研究中的应用. 安徽农业大学学报, 2006, 33(1): 94-99.

Wei C L, Gao X F, Jiang C J, Ye A H. Techniques of diferential display for gene expression profile and applications into the responses of plant to pest feeding. Journal of Anhui Agricultural University, 2006, 33(1): 94-99. (in Chinese)

[2]Durrant W E, Rowland O, Piedras P, Hammond-Kosack K E, Jones J D G. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. The Plant Cell, 2000, 12(6): 963-978.

[3]Bachem C W B, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Molecular Biology Reporter, 1998, 16(2): 157-173.

[4]Brugmans B, Del Carmen A F, Bachem CWB, Os HV, Van Eck H J, Visser I G F. A novel method for the construction of genome wide transcriptome maps. The Plant Journal, 2002, 31(2): 211-222.

[5]姜立杰, 张开春, 张晓明. cDNA-AFLP技术及其在基因表达研究中的应用.中国生物工程杂志, 2003, 23(12): 83-84.

Jiang L J, Zhang K C, Zhang X M. The principle of cDNA-AFLP technique and its application in gene expression. China Biotechnology, 2003, 23(12): 83-84.(in Chinese)

[6]Van der Biezen E A, Juwana H, Parker J E, Jones J D E. cDNA-AFLP display for the isolation of Peronospora parasitica genes expressed during infection in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2000, 13(8): 895-898.

[7]Zhang L, Meakin H, Dickinson M. Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP. Molecular Plant Pathology, 2003, 4(6): 469-477.

[8]Guoa J, Jianga R H, Kamphuisa LG, Govers F. A cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans. Fungal Genetics and Biology, 2006, 43(2): 111-123.

[9]Polesani M, Desario F, Ferrarini A, Zamboni A, Pezzotti M, Kortekamp A, Polverari A. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics, 2008, 9:142.

[10]Zamharir G M, Mardi M, Alavi S M, Hasanzadeh N, Nekouei M K, Zamanizadeh H R, Alizadeh A, Salekdeh G H. Identification of genes differentially expressed during interaction of Mexican lime tree infected with “Candidatus Phytoplasma aurantifolia”. BMC Microbiology, 2011, 11:1.

[11]黄河, 王顺利, 戴思兰. 利用cDNA-AFLP 技术鉴定菊花品种‘紫荷’的抗白锈病相关基因.中国农业科学, 2012, 45(5): 926-935.

Huang H, Wang S L, Dai S L. cDNA -AFLP analysis of white rust response genes in Chrysanthemum morifolium ‘Zihe’. Scientia Agricultura Sinica, 2012, 45(5): 926-935. (in Chinese)

[12]Samnelian S, Kleine M, Ruyter-Spira C P, Klein-Lankhorst, Jung C. Cloning and functional analyses of a gene from sugar beet up-reglated upon cyst nematode infection. Plant Molecular Biology, 2004, 54: 147-156.

[13]Qubbaj T, Reineke A, Zebitz C P W. Molecular interactions between rosy apple aphids, Dysaphis plantaginea and resistant and susceptible cultivars of its primary host Malus domestica. Entomologia Experimentalis and Applicata, 2005, 115: 145-152.

[14]许宁, 陈宗懋, 游小清. 引诱茶尺蠖天敌寄生蜂的茶树挥发物的分离与鉴定. 昆虫学报, 1999, 42(2): 129-130.

Xu N, Chen Z M, You X Q. Isolation and identification of tea plant volatiles attractive to tea geometrid parasitoids. Acta Entomologica Sinica, 1999, 42(2): 129-130. (in Chinese)

[15]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Applied Biosystems, 2001(25): 402-408.

[16]Chao Y E, Zhang M, Feng Y, Yang X E, Islam E. cDNA-AFLP analysis of inducible gene expression in zinc hyperaccumulator Sedum alfredii Hance under zinc induction. Environmental and Experimental Botany, 2010, 68(2): 107-112.

[17]张岗, 董艳玲, 夏宁, 张毅, 王晓杰, 屈志鹏, 李依民, 黄丽丽, 康振生. 利用cDNA-AFLP 技术分析小麦成株抗条锈性差异基因表达特征.作物学报, 2010, 36(3): 401-409.

Zhang G, Dong Y L, Xia N, Zhang Y, Wang X J, Qu Z P, Li Y M, Huang L L, Kang Z S. cDNA-AFLP analysis reveals differential gene expression in wheat adult-plant resistance to stripe rust. Acta Agronomica Sinica, 2010, 36(3): 401-409. (in Chinese)

[18]赵剑, 杨文杰, 朱蔚华. 细胞色素P450与植物的次生代谢.生命科学, 1999, 11(3): 128-129.

Zhao J, Yang W J, Zhu W H. Cytochrome P450 and plant secondary metabolism. Chinese Bulletin of Life Sciences,1999, 11(3): 128-129. (in Chinese)

[19]朱平, 王伟, 程克棣. 药用植物功能基因.中国生物工程杂志, 2004, 24(2): 5-6.

Zhu P, Wang W, Cheng K D. Progress in the functional gene research of medicinal plants. China Biotechnology, 2004, 24(2): 5-6. (in Chinese) 

[20]Park S W, Kaimoyo E, Kumar D, Mosher S, Klessig D F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 2007, 318(5): 113-116.

[21]Shulaev V, Silverman P, Raskin I. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature, 1997, 385: 718-721.

[22]Van Poecke R M P, Posthumus M A, Dicke M. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene expression analysis. Journal of Chemical Ecology, 2001, 27: 1911-1928.

[23]Pare P W, Tumlinson J H. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiology, 1997, 114(4): 1161-1167.

[24]耶兴元, 马锋旺. 植物热激蛋白研究进展. 西北农业学报, 2004, 13(2): 109-114.

Ye X Y, Ma F W. Advances in the research of heat shock proteins in plants. Acta Agriculturae Boreali-occidentalis Sinica, 2004, 13(2): 109-114. (in Chinese)

[25]陈俊, 王宗阳. 植物MYB类转录因子研究进展. 植物生理与分子生物学学报, 2002, 28(2): 81-88.

Chen J, Wang Z Y. Progress in the study of plant MYB transcription factors. Journal of Plant Physiology and Molecular Biology, 2002, 28(2): 81-88.(in Chinese)

[26]韦朝领, 高香凤. 基于 DDRT-PCR研究茶树对茶尺蠖取食诱导的基因表达谱差异.茶叶科学, 2007, 27(2): 133-140.

Wei C L, Gao X F. Differential gene expression profiles analysis of tea plant induced by tea looper (Ectropic oblique) attack using DDRT- PCR. Journal of Tea Science, 2007, 27(2): 133-140. (in Chinese)

[27]Pinto M E, Casati P, Hsu T P, Ku MS, Edwards G E. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions. Journal of Photochemistry and Photobiology B: Biology, 1999, 48: 200-209.
[1] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[2] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[3] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[4] XIAO LuoDan, TANG Lei, WANG WeiDong, GAO YueFang, HUANG YiFan, MENG Yang, YANG YaJun, XIAO Bin. Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant [J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476.
[5] ZHOU JingLong, FENG ZiLi, FENG HongJie, LI YunQing, YUAN Yuan, LI ZhiFang, WEI Feng, SHI YongQiang, ZHAO LiHong, SUN ZhengXiang, ZHU HeQin, ZHOU Yi. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium Bacillus cereus YUPP-10 Against Verticillium Wilt in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2017, 50(14): 2717-2727.
[6] BO Xiao-pei1, WANG Meng-xin1, CUI Lin1, WANG Jin-he2, HAN Bao-yu1. Evaluation on Correlations of Three Kinds of Osmoregulation Substances in Tea Fresh Leaves with Low Temperature During Winter and Spring Respectively and Their Difference Among Cultivars [J]. Scientia Agricultura Sinica, 2016, 49(19): 3807-3817.
[7] YUE Chuan, CAO Hong-li, ZHOU Yan-hua, WANG Lu, HAO Xin-yuan, WANG Xin-chao, YANG Ya-jun. Cloning and Expression Analysis of Glutathione Reductase Genes(CsGRs) in Tea Plant (Camellia sinensis) [J]. Scientia Agricultura Sinica, 2014, 47(16): 3277-3289.
[8] ZHANG Li-Qun-1, WEI Kang-1, WANG Li-Yuan-1, CHENG Hao-1, LIU Ben-Ying-2, GONG Wu-Yun-1. The Structure and Single Nucleotide Polymorphism Analysis of Chalcone Synthase Genes in Tea Plant (Camellia sinenesis) [J]. Scientia Agricultura Sinica, 2014, 47(1): 133-144.
[9] LUAN Zhao-Jie, CAO Yuan-Yin, LI Tian-Ya, CHEN Si, CHEN Xiu-Mei, ZHU Gui-Qing, LI Wei-Hua. cDNA-AFLP Analysis of Differentially Expressed Resistant Genes of Minn2761 [J]. Scientia Agricultura Sinica, 2013, 46(23): 5058-5065.
[10] MA Cheng-Ying, 吕Hai-Peng , LIN Zhi, ZHANG Yue, GUO Li, TAN Jun-Feng. Cloning and Prokaryotic Expression of Flavonoid O-methyltransferase from Camellia sinensis [J]. Scientia Agricultura Sinica, 2013, 46(2): 325-333.
[11] CAO Hong-Li-12, YUE Chuan-12, HAO Xin-Yuan-13, WANG Xin-Chao-1, YANG Ya-Jun-1. Cloning of Choline Monooxygenase (CMO) Gene and Expression Analysis of the Key Glycine Betaine Biosynthesis-Related Genes in Tea Plant (Camellia sinensis) [J]. Scientia Agricultura Sinica, 2013, 46(15): 3087-3096.
[12] YANG Rui-Xian, FAN Xiao-Jing, QIU Si-Xin, CAI Xue-Qing, HU Fang-Ping. cDNA-AFLP Analysis of Differential Gene Expression in Pepper Inoculated with Endophytic Bacillus amyloliquefaciens Fy11 [J]. Scientia Agricultura Sinica, 2013, 46(12): 2449-2458.
[13] XIA Tao, GAO Li-Ping, LIU Ya-Jun, WANG Yun-Sheng, LIU Li, ZHAO Lei, JIANG Xiao-Lan, QIAN Yu-Mei. Advances in Research of Biosynthesis and Hydrolysis Pathways of Gallated Catechins in Camellia sinensis [J]. Scientia Agricultura Sinica, 2013, 46(11): 2307-2320.
[14] CHEN Shu-Xia, CHEN Qiao, WANG Cong-Ying, HAO Li-Ning, FANG Yu-Lin. Progress in Research on the Metabolic Regulation and Molecular Mechanism of Green Leave Volatiles (GLVs)   [J]. Scientia Agricultura Sinica, 2012, 45(8): 1545-1557.
[15] HUANG He, WANG Shun-Li, DAI Si-Lan. cDNA-AFLP Analysis of White Rust Response Genes in Chrysanthemum morifolium ‘Zihe’ [J]. Scientia Agricultura Sinica, 2012, 45(5): 926-935.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!