Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (10): 1980-1988.doi: 10.3864/j.issn.0578-1752.2011.10.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Overlap Between Salt and Low-Temperature Tolerance Loci at Germination Stage of Soybean

 QIU  Peng-Cheng, ZHANG  Wen-Bo, JIANG  Hong-Wei, LIU  Chun-Yan, LI  Can-Dong, FAN  Dong-Mei, ZENG  Qing-Li, HAN  Dong-Wei, HU  Guo-Hua, CHEN  Qing-Shan   

  1. 1.黑龙江省农垦科研育种中心,哈尔滨 150090
    2.东北农业大学农学院,哈尔滨 150030
    3.国家大豆工程技术研究中心,哈尔滨 150050
    4.黑龙江省农业科学院佳木斯分院,黑龙江佳木斯 154007
    5.黑龙江省农业科学院齐齐哈尔分院,黑龙江齐齐哈尔 161006
  • Received:2010-09-16 Online:2011-05-15 Published:2010-11-26

Abstract: 【Objective】The main purpose of this paper was to map the QTLs related with salt tolerance and low-temperature tolerance at germination stage with backcross introgression lines (ILs), and analyze the genetic overlap between them. These overlapping QTL loci could be used to breed soybean varieties with both salt tolerance and low-temperature tolerance, improve efficiency of stress-tolerance breeding. 【Method】A primary backcross introgression lines (ILs) were constructed with Hong-feng11 as recurrent parent and Harosoy as donor parent. Then 48 individuals from BC2F4 introgression populations were obtained after screening in 1.75% NaCl solution, and 40 individuals were screened out after 6℃ low-temperature treatment comparing with the Hong-feng11 at germination stage. The QTL identification of the germination stage was conducted by chi-square test and analysis of variances with the two introgression populations. 【Result】There were 22 QTL located with BC2F4 introgression populations after salt stress, and 15 QTL were mapped after low-temperature stress. Seven overlapping QTLs between salt tolerance and low-temperature tolerance were detected on 6 linkage groups at germination stage. 【Conclusion】In total, there were 31.81% of salt tolerance and low-temperature tolerance loci existed genetic overlap.

Key words: soybean, introgression lines, salt tolerance, low-temperature tolerance, genetic overlap

[1]Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29A gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular and General Genetics, 1993, 236: 331-340.

[2]Mullet J E, Whitsitt M S. Plant cellular responses to water deficit. Plant Growth Regulation, 1996, 20: 119-124.

[3]张海燕, 关荣霞, 李英慧, 王丽侠, 滦维江, 常汝镇, 刘章雄, 邱丽娟. 大豆耐盐性种质资源SSR遗传多样性及标记辅助鉴定. 植物遗传资源学报, 2005, 6(3): 251-255.

Zhang H Y, Guan R X, Li Y H, Wang L X, Luan W J, Chang R Z, Liu Z X, Qiu L J. Genetic diversity analysis and marker assisted identification of salt tolerant soybean by using SSR marker. Journal of Plant Genetic Resources, 2005, 6(3): 251-255. (in Chinese)

[4]Lee G J, Boerma H R, Villagarcia M R, Zhou X, Carter Jr T E, Li Z, Gibbls M O. A major QTL conditioning salt tolerance in S-100 soybean and descendant cultivars. Theoretical and Applied Genetics, 2004, 109(8): 1610-1619.

[5]蒋洪蔚, 李灿东, 刘春燕, 张闻博, 邱鹏程, 李文福, 高运来, 胡国华, 陈庆山. 大豆导入系群体芽期耐低温位点的基因型分析及QTL定位. 作物学报, 2009, 35(7): 1268-1273.

Jiang H W, Li C D, Liu C Y, Zhang W B, Qiu P C, Li W F, Gao Y L, Hu G H, Chen Q S. Genotype analysis and QTL mapping for tolerance to low temperature in germination by introgression lines in soybean. Acta Agronomica Sinica, 2009, 35(7): 1268-1273. (in Chinese)

[6]胡国玉, 赵晋铭, 周  斌, 左巧美, 盖钧镒, 喻德跃, 邢 邯. 大豆耐低温出苗的遗传分析与分子标记. 大豆科学, 2008, 27(6): 905-910.

Hu G Y, Zhao J M, Zhou B, Zuo Q M, Gai J Y, Yu D Y, Xing H. Inheritance and molecular marker of chilling tolerance of soybean in early stage. Soybean Science, 2008, 27(6): 905-910. (in Chinese)

[7]徐建龙, 薛庆中, 罗利军, 黎志康. 水稻单株有效穗数和每穗粒数的QTL剖析. 遗传学报, 2001, 28(8): 752-759.

Xu J L, Xue Q Z, Luo L J, Li Z K. QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L.). Acta Genetica Sinica, 2001, 28(8): 752-759. (in Chinese)

[8]郑天清, 徐建龙, 傅彬英, 高用明, Satish Veruka, Renee Lafitte, 翟虎渠, 万建民, 朱苓华, 黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究. 作物学报, 2007, 33(8): 1380-1384.

Zheng T Q, Xu J L, Fu B Y, Gao Y M, Veruka S, Lafitte R, Zhai H Q, Wan J M, Zhu L H, Li Z K. Preliminary identification of genetic overlaps between sheath blight resistance and drought tolerance in the introgression lines from directional selection. Acta Agronomica Sinica, 2007, 33(8): 1380-1384. (in Chinese)

[9]高世庆, 徐惠君, 程宪国, 陈  明, 徐兆师, 李连城, 杜丽璞, 叶兴国, 郝晓燕, 马有志. 转大豆GmDREB基因增强小麦耐旱耐盐性. 科学通报, 2005, 50(23): 2617-2625.

Gao S Q, Xu H J, Cheng X G, Chen M, Xu Z S, Li L C, Du L P, Ye X G, Hao X Y, Ma Y Z. Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max ). Chinese Science Bulletin, 2005, 50(23): 2617-2625. (in Chinese)

[10]吴亮其, 范战民, 郭  蕾, 李勇青, 张文静, 瞿礼嘉, 陈章良. 通过转δ-OAT基因获得抗盐抗旱水稻. 科学通报, 2003, 48(19): 2050-2056.

Wu L Q, Fan Z M, Guo L, Li Y Q, Zhang W J, Qu L J, Chen Z L. Over-expression fo an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice. Chinese Science Bulletin, 2003, 48(19): 2050-2056. (in Chinese)

[11]程海涛, 姜  华, 薛大伟, 郭龙彪, 曾大力, 张光恒, 钱  前. 水稻芽期与幼苗前期耐碱性状QTL定位. 作物学报, 2008, 34(10): 1719-1727.

Cheng H T, Jiang H, Xue D W, Guo L B, Zeng D L, Zhang G H, Qian Q. Mapping of QTLs underlying tolerance to Alkali at germination and early seeding stages in rice. Acta Agronomica Sinica, 2008, 34(10): 1719-1727. (in Chinese)

[12]郭房庆, 汤章城. NaCl胁迫下抗盐突变体和野生型小麦Na+、K+累积的差异分析. 植物学报, 1999, 41(5): 515-518.

Guo F Q, Tang Z C. Difference in Na + , K+ accumulation in the salt-tolerant mutant and the wild type of wheat during exposure to NaCl stress. Acta Botanica Sinica, 1999, 41(5): 515-518. (in Chinese)

[13]祈旭升, 王兴荣, 许  军, 张建平, 米  君. 胡麻种质资源成株期抗旱性评价. 中国农业科学, 2010, 43(15): 3076-3087.

Qi X S, Wang X R, Xu J, Zhang J P, Mi J. Drought-resistance evaluation of flax germplasm at adult plant stage. Scientia Agricultura Sinica, 2010, 43(15): 3076-3087.

[14]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theoretical and Applied Genetics, 2005, 111: 1642-1650.

[15]Zang J P, Sun Y, Wang Y, Yang J, Li F, Zhou Y L, Zhu L H, Jessica R, Mohammadhosein F, Xu J L, Li Z K. Dissection of genetic overlap of salt tolerance QTLs at the seeding and tillering stages using backcross introgression lines in rice. Science in China: Life Science, 2008, 51(7): 583-591.

[16]Xiong L Z, Yang Y N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell, 2003, 15: 745-759.

[17]廖长见, 王颖姮, 潘光堂. 作物染色体导入系的构建及其应用. 分子植物育种, 2007, 5(6): 139-144.

Liao C J, Wang Y H, Pan G T. Construction and application of chromosome introgression lines in crops. Molecular Plant Breeding, 2007, 5(6): 139-144. (in Chinese )

[18]Xiong L, Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Environment, 2002, 25: 131-139.

[19]郑天清, 徐建龙, 傅彬英, 高用明, Satish Veruka, Renee Lafitte, 翟虎渠, 万建民, 朱苓华, 黎志康. 遗传搭车与方差分析在水稻定向选择群体的抗旱性位点分析中的初步应用. 作物学报, 2007, 33(5): 799-804.

Zheng T Q, Xu J L, Fu B Y, Gao Y M, Veruka S, Lafitte R, Zhai H Q, Wan J M, Zhu L H, Li Z K. Application of genetic hitch-hiking and ANOVA in identification of loci for drought tolerance in populations of rice from directional selection. Acta Agronomica Sinica, 2007, 33(5): 799-804. (in Chinese)

 [20]Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L.esculentum: A tool for fine mapping of genes. Euphytica, 1994, 79: 175-179.

[21]Zhang Y S, Luo L J, Xu C G, Zhang Q F, Xing Y Z. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theoretical and Applied Genetics, 2006, 113(2): 361-368.

[22]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Laritte H R, Jiang Y Z, Domingo R J, Vijayakumar C H M, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.), Plant Molecular Biology, 2005, 59: 33-52.

[23]Xu J L, Laritte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theoretical and Applied Genetics, 2005, 111: 1642-1650.

[24]Richards R A. Defining selection criteria to improve yield under drought. Plant Growth Regulation, 1996, 20: 157-166.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[10] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[11] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[12] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[13] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[14] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[15] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!