Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (17): 3499-3510 .doi: 10.3864/j.issn.0578-1752.2010.17.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of Molecular Identity for Kenaf Germplasm Using ISSR and RAPD Markers

ZHENG Hai-yan, SU Jian-guang, DAI Zhi-gang, LI Yan, CHEN Ji-quan, GONG You-cai
  

  1. (中国农业科学院麻类研究所)
  • Received:2010-02-01 Revised:2010-04-29 Online:2010-09-01 Published:2010-09-01
  • Contact: SU Jian-guang

Abstract:

【Objective】 Fifty-one accessions of kenaf germplasm from different countries and areas, which contain cultivated, wild and related species, were genetically analyzed in order to establish molecular identity of kenaf germplasm. 【Method】 Various types of kenaf were used for inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analysis. The genetic similarity coefficients were estimated and cluster analysis were carried out using UPGMA method. 【Result】 Nineteen ISSR primers generated 113 bands, of which 101 were polymorphic and PPB was 89.38%. Twenty RAPD primers generated 118 bands, of which 112 were polymorphic and PPB was 94.92%. The results showed that diversity of kenaf gerplasm was high. Fifty-one specific molecular identities could be established by three methods, which were specific bands, typical band patterns and primer combinations. 【Conclusion】 The higher genetic diversity revealed higher genetic distance and wider genetic base. ISSR and RAPD can be used for establishing molecular identity of kenaf germlasm.

Key words: kenaf, molecular markers, germplasm, molecular identity

[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[4] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[5] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[8] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[9] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[10] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[11] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[12] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[13] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[14] DongFeng QIU,PingJuan GE,Gang LIU,JinSong YANG,JianGuo CHEN,ZaiJun ZHANG. Breeding and Evaluation of Elite Rice Line ZY56 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091.
[15] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!