Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (9): 1948-1953 .doi: 10.3864/j.issn.0578-1752.2010.09.023

• VETERINARY SCIENCE • Previous Articles     Next Articles

Effect of Soy Isoflavone on the Expression of IL-2 mRNA in the Ovariectomized Rat’s Spleen

CHEN Zheng-li, LUO Qi-hui, CHENG An-chun
  

  1. (四川农业大学动物医学院/动物疫病与人类健康四川省重点实验室)
  • Received:2009-07-21 Revised:2010-01-04 Online:2010-05-01 Published:2010-05-01

Abstract:

【Objective】 The objective of the experiment is to research on the effects of soy isoflavone on expression of IL-2 mRNA in the spleen of ovariectomized (OVX) rat. 【Method】 Sixty young female rats were ovariectomized, and then these rats were supplied with soy isoflavone respectively in high dosage (1.5 mg•kg-1), medium dosage (1.0 mg•kg-1), low dosage (0.5 mg•kg-1) and solvent agent via hypodermic injection. At the second, fourth and sixth week after treatment, 5 rats per group were killed for study. The expression and distribution of IL-2 mRNA in the spleen were studyed by in situ histo-hybridization method. 【Result】 The IL-2 mRNA mainly distributed in red pulp close to the capsule, some in periphery of splenic corpuscle, marginal zone and outer layer of periarterial lymphatic sheath. The general tendency of the intensity and the number of IL-2 mRNA positive cells of OVX rats are significantly decreased, and the degression was more significantly with the time going after ovariectomizing treatment. While after treatment with soy isoflavone, the general tendency of the intensity and the number of IL-2 mRNA positive cells of OVX rats were increased and showed a time-dependent manner. In the same period of time, with the increasing concentration of soy isoflavone, the general tendency of the intensity and the number of IL-2 mRNA positive cells were increased and showed a dose-dependent manner. 【Conclusion】 The above results suggested that soy isoflavone could upregulate the expression of IL-2 mRNA and showed a time- and dose-dependent manner.

Key words: soy isoflavone, in situ histo-hybridization method, IL-2 mRNA, spleen, ovariectomized, rat

[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[4] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[7] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[8] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[9] DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa [J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
[10] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[11] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[12] CHEN ZhiYong, ZHANG Zhi, LIU Jie, KANG AiGuo, ZHAO SuMei, YIN XiangJie, LI ZhanQing, XIE AiTing, ZHANG YunHui. Spatiotemporal Dynamics and Source of Loxostege sticticalis in Northern China in 2020 [J]. Scientia Agricultura Sinica, 2022, 55(5): 907-919.
[13] WANG YuTai,XU ZhiFan,LIU Jie,ZHONG GuoHua. Preparation and Application of Indoxacarb Degrading Bacteria Immobilized Sodium Alginate Microspheres [J]. Scientia Agricultura Sinica, 2022, 55(5): 920-931.
[14] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[15] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!