Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (4): 729-736 .doi: 10.3864/j.issn.0578-1752.2010.04.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Potassium on Ultrastructure of Maize Stalk Pith and Young Root and Their Relation to Resistance to Stalk Rot

LI Wen-juan, HE Ping, JIN Ji-yun
  

  1. (中国农业科学院农业资源与农业区划研究所/农业部作物营养与施肥重点开放实验室)

  • Received:2009-05-20 Revised:2009-09-17 Online:2010-02-20 Published:2010-02-20
  • Contact: HE Ping

Abstract:

【Objective】 The objective of the experiment is to study the mechanism of potassium application on improvement of maize resistance to stalk rot at cell level. 【Method】 Scanning electron microscope and transmission electron microscope were used to observe the effect of K on the ultrastructure of maize stalk pith tissue and young root tip cell influenced by K and pathogen. 【Result】 In K deficient treatment, parenchyma cells of stalk pith had abnormity structure and the cell wall between upper and lower adjacent cell was broken, resulting in the loss of connections between vascular cells and bad supporting capacity. In addition, improved K nutrition also helped in keeping a quite tight arrangement of root cell with thick cell wall, prevented the invading of pathogen effectively. Moreover, K treated root cell had abundant golgi apparatus, which could excrete large amount of secretions to degrade mycelium. Papillary and highly electronic intensity dot were accumulated in the invading point to prevent the development of the mycelium. 【Conclusion】 Improved K nutrition could increase the resistant ability of maize plant to stalk rot, through keeping cell structure stability and preventing the expansion of intracellular space to reduce the chances of pathogen invasions; through reinforcing cell wall and formation intercellular and intracellular material to restrict pathogen further development in host cell.

Key words: potassium (K), maize stalk rot, ultrastructure, disease resistance

[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[5] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[6] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[7] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[8] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[9] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[10] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[11] MA LingLing,FENG Jia,WANG Jing,QI GuangHai,MA YouBiao,WU ShuGeng,ZHANG HaiJun,QIU Kai. The Changes of Eggshell Quality in the Laying Cycle of Hy-Line Brown Layers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3766-3779.
[12] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[13] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[14] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[15] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!