Scientia Agricultura Sinica ›› 2009, Vol. 42 ›› Issue (4): 1207-1214 .doi: 10.3864/j.issn.0578-1752.2009.04.011

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Study on Ontology-Based Framework of Crop System Simulation

  

  1. 南京农业大学农学院/江苏省信息农业高技术研究重点实验室
  • Received:2008-04-21 Revised:2008-08-10 Online:2009-04-10 Published:2009-04-10
  • Contact: CAO Wei-xing

Abstract:

【Objective】 The Crop System Simulation Framework (CSSF) is the basis of the reconfigurable simulation software about the crop model resource mapping and design. 【Method】 This research bring the technology of ontology into the field of crop system simulation. Based on the physiological and ecological processes of crop growth, the common characteristics and relationships of crop system (wheat, rice, cotton, rapeseed) modeling processes, model algorithm and model parameters were analyzed and extracted with the ontologies of simulation and crop simulation, the CSSF were constructed. 【Result】 CSSF includes outer (CMOKF) and inner (CMIKF) knowledge frameworks of crop modeling. CMOKF describes the outer common characteristics driven by time, space and environment, while CMIKF describes the inner common characteristics of models components and models algorithm about phasic and phenological development, biomass accumulation, dry matter distribution and yield formation, organ built, plant-soil water dynamics and nutrient balance simulation. 【Conclusion】 CSFF realized the knowledge level sharing the crop modeling concepts, processes, structures and methods, and could play a guiding role on designing the reusable crop model software architecture.

Key words: crop, simulation model, ontology, modeling framework, component framework, algorithm framework

[1] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[2] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[7] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[8] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[9] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[10] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[11] LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System [J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
[12] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[13] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[14] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[15] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!