Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2196-2210    DOI: 10.1016/j.jia.2024.02.009
Special Issue: 玉米遗传育种Maize Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize

Hui Fang1*, Xiuyi Fu2*, Hanqiu Ge1, Mengxue Jia1, Jie Ji1, Yizhou Zhao1, Zijian Qu1, Ziqian Cui1, Aixia Zhang1, Yuandong Wang2#, Ping Li1#, Baohua Wang1#

1 Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs/School of Life Sciences, Nantong University, Nantong 226019, China

2 Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
土壤盐碱化对全球玉米生产构成威胁。但玉米的耐盐机制尚不十分清楚,因此,鉴定玉米耐盐的遗传组分具有重要意义。本研究使用大刍草-玉米为双亲构建的BC2F7群体对21个玉米盐耐性相关性状的遗传基础进行调查。利用高密度遗传图谱,共检测到125个QTL,其中每个性状能够检测到1~5个QTL,每个QTL可以解释6.05-32.02%的表型变异。每个性状检测到的所有QTL解释的表型变异范围为6.84%~63.88%。在所有鉴定到的125个QTL中,只有三个是主效QTL,分布在6号染色体上的两个基因组区域中,涉及3个盐耐相关性状。此外,在8个性状中还检测到了10对具有加加效应的上位性互作QTL,这些互作效应能够解释0.9%~4.44%的表型变异。检测到了18个QTL热区,每个热区能够影响3-7个性状。在L5热区中,发现了一个由4个基因(ZmNSA1SAG6ZmCLCgZmHKT1;2)组成的基因簇,表明这个热区可能有多个基因参与玉米盐胁迫响应。最后,通过连锁和标记-性状关联分析的结合鉴定到两个重要的候选基因Zm00001d002090Zm00001d002391与盐耐相关性状显著关联。Zm00001d002090编码了一个钙离子依赖的脂质结合(CaLB结构域)家族蛋白,可能作为Ca2+传感器,将盐胁迫信号传递到下游。而Zm00001d002391编码属于C19相关亚家族的泛素特异性蛋白酶。我们的研究结果为解析玉米盐耐相关性状的遗传基础提供了宝贵的见解,并为育种家改良耐盐玉米品种提供了理论基础。


Abstract  
Soil salinization poses a threat to maize production worldwide, but the genetic mechanism of salt tolerance in maize is not well understood.  Therefore, identifying the genetic components underlying salt tolerance in maize is of great importance.  In the current study, a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.  In total, 125 QTLs were detected using a high-density genetic bin map, with one to five QTLs explaining 6.05–32.02% of the phenotypic variation for each trait.  The total phenotypic variation explained (PVE) by all detected QTLs ranged from 6.84 to 63.88% for each trait.  Of all 125 QTLs, only three were major QTLs distributed in two genomic regions on chromosome 6, which were involved in three salt tolerance-related traits.  In addition, 10 pairs of epistatic QTLs with additive effects were detected for eight traits, explaining 0.9 to 4.44% of the phenotypic variation.  Furthermore, 18 QTL hotspots affecting 3–7 traits were identified.  In one hotspot (L5), a gene cluster consisting of four genes (ZmNSA1, SAG6, ZmCLCg, and ZmHKT1;2) was found, suggesting the involvement of multiple pleiotropic genes.  Finally, two important candidate genes, Zm00001d002090 and Zm00001d002391, were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.  Zm00001d002090 encodes a calcium-dependent lipid-binding (CaLB domain) family protein, which may function as a Ca2+ sensor for transmitting the salt stress signal downstream, while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.  Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties.


Keywords:  maize       salt tolerance-related traits        QTL mapping        region-based association analysis  
Received: 21 September 2023   Accepted: 21 December 2023
About author:  Hui Fang, E-mail: fanghui8912@ntu.edu.cn; #Correspondence Baohua Wang, Tel: +86-513-85012812, E-mail: bhwang@ntu.edu.cn; Ping Li, E-mail: pingli6@hotmail.com; Yuandong Wang, E-mail: wyuandong@126.com * These authors contributed equally to this study.

Cite this article: 

Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. 2024. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize. Journal of Integrative Agriculture, 23(7): 2196-2210.

Alexander D H, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664.

Apse M P, Aharon G S, Snedden W A, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256–1258.

Beissinger T M, Wang L, Crosby K, Durvasula A, Hufford M B, Ross-Ibarra J. 2016. Recent demography drives changes in linked selection across the maize genome. Nature Plants, 2, 16084.

Berthomieu P, Conéjéro G, Nublat A, Brackenbury W J, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah P A, Tester M, Very A A, Sentenac H, Casse F. 2003. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal, 22, 2004–2014.

Blumwald E, Aharon G S, Apse M P. 2000. Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA) (Biomembranes), 1465, 140–151.

Bradbury P J, Zhang Z, Kroon D E. Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.

Cadic E, Coque M, Vear F, Grezes-Besset B, Pauquet J, Piquemal J, Lippi Y, Blanchard P, Romestant M, Pouilly N, Rengel D, Gouzy J, Langlade N, Mangin B, Vincourt P. 2013. Combined linkage and association mapping of flowering time in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 126, 1337–1356.

Cao Y, Liang X, Yin P, Zhang M, Jiang C. 2019. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytologist, 222, 301–317.

Cao Y, Zhang M, Liang X, Li F, Shi Y, Yang X, Jiang C. 2020. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline–alkaline tolerance in maize. Nature Communications, 11, 186.

Du D, Hu X, Song X, Sun Z, Lang M, Pan Y, Zheng Y, Pan Y. 2023. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato. Journal of Integrative Agriculture, 22, 2384–2396.

Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L, Xu J, Zhang L, Han Y, Xiao Y, Xu G, Wang Y, Wang S, Wu S, Yang F, Jackson D, et al. 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 375, eabg7985.

Cui D, Wu D, Somarathna Y, Xu C, Li S, Li P, Zhang H, Chen H, Zhao L. 2015. QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica, 203, 273–283.

Doebley J, Stec A, Gustus C. 1995. teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics, 141, 333–346.

Fang H, Fu X, Ge H, Zhang A, Shan T, Wang Y, Li P, Wang B. 2021. Genetic basis of maize kernel oil-related traits revealed by high-density SNP markers in a recombinant inbred line population. BMC Plant Biology, 21, 1–12.

Fang H, Fu X, Wang Y, Xu J, Feng H, Li W, Xu J, Jittham O, Zhang X, Zhang L, Yang N, Xu G, Wang M, Li X, Li J, Yan J, Yang X. 2020. Genetic basis of kernel nutritional traits during maize domestication and improvement. The Plant Journal, 101, 278–292.

Fu Z, Chai Y, Zhou Y, Yang X, Warburton M L, Xu S, Cai Y, Zhang D, Li J, Yan J. 2013. Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theoretical and Applied Genetic, 126, 923–935.

Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Le Paslier M C, McMullen M D, Montalent P, Rose M, Schön C C, Sun Q, Walter H, Martin O C, Falque M. 2011. A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE, 6, e28334.

Geilfus C M, Ludwig-Müller J, Bárdos G, Zörb C. 2018. Early response to salt ions in maize (Zea mays L.). Journal of Plant Physiology, 220, 173–180.

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella L R, Xu G, Chao D Y, Li J, Wang P Y, Qin F, Li J, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J K. 2020. Plant abiotic stress response and nutrient use efficiency. Science China (Life Sciences), 63, 635–674.

Guo Z, Liu X, Zhang B, Yuan X, Xing Y, Liu H, Luo L, Chen G, Xiong L. 2021. Genetic analyses of lodging resistance and yield provide insights into post-Green-Revolution breeding in rice. Plant Biotechnology Journal, 19, 814–829.

Halfter U, Ishitani M, Zhu J K. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America, 97, 3735–3740.

Van Heerwaarden J, Doebley J, Briggs W H, Glaubitz J C, Goodman M M, Gonzalez J d J S, Ross-Ibarra J. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences of the United States of America, 108, 1088–1092.

Hoopes G M, Hamilton J P, Wood J C, Esteban E, Pasha A, Vaillancourt B, Provart N J, Buell C R. 2019. An updated gene atlas for maize reveals organ-specific and stress-induced genes. The Plant Journal, 97, 1154–1167.

Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D, Wu L, Yang X, Jin W, Doebley J F, Tian F. 2018. ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences of the United States of America, 115, E334–E341.

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42, 961–967.

Ismail A M, Horie T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology, 68, 405–434.

Lander E S, Botstein D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121, 185–199.

Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton M L, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetic, 45, 43–50.

Li K, Yang X, Liu X, Hu X, Wu Y, Wang Q, Ma F, Li S, Wang H, Liu Z, Huang C. 2022. QTL analysis of the developmental changes in cell wall components and forage digestibility in maize (Zea mays L.). Journal of Integrative Agriculture, 21, 3501–3513.

Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, Ma J, Wang S, Zhang X, Xia Z, Chen J, Wu J. 2016. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Frontiers in Plant Science, 7, 833.

Liao S, Xu Z, Fan X, Zhou Q, Liu X, Jiang C, Chen L, Lin D, Feng B, Wang T. 2024. Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 23, 77–92.

Liu G, Jiang W, Tian L, Fu Y, Tan L, Zhu Z, Sun C, Liu F. 2022. Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice. Journal of Genetics and Genomics, 49, 458–468.

Liu H, Liu H, Zhou L, Zhang Z, Zhang X, Wang M, Li H, Lin Z. 2015. Parallel domestication of the heading date 1 gene in cereals. Molecular Biology and Evolution, 32, 2726–2737.

Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q, Yan J. 2017. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Molecular Plant, 10, 414–426.

Liu J, Ishitani M, Halfter U, Kim C S, Zhu J K. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 97, 3730–3734.

Liu L, Du Y, Shen X, Li M, Sun W, Huang J, Liu Z, Tao Y, Zheng Y, Yan J, Zhang Z. 2015. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics, 11, e1005670.

Liu M, Tan X, Yang Y, Liu P, Zhang X, Zhang Y, Wang L, He Y, Ma L, Li Z, Zhang Y, Zou C, Lin H, Gao S, Lee M, Lübberstedt T, Pan G, Shen Y. 2020. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnology Journal, 18, 207–221.

Liu Y, Chen X, Xue S, Quan T, Cui D, Han L, Cong W, Li M, Yun D J, Li B, Xu Z Y. 2021. SET DOMAIN GROUP 721 protein functions in saline–alkaline stress tolerance in the model rice variety Kitaake. Plant Biotechnology Journal, 19, 2576–2588.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.

Luo M, Zhang Y, Chen K, Kong M, Song W, Lu B, Shi Y, Zhan Y, Zhao J. 2019. Mapping of quantitative trait loci for seedling salt tolerance in maize. Molecular Breeding, 39, 1–12.

Luo M, Zhang Y, Li J, Zhang P, Chen K, Song W, Wang X, Yang J, Lu X, Lu B, Zhao Y, Zhao J. 2021. Molecular dissection of maize seedling salt tolerance using a genome-wide association analysis method. Plant Biotechnology Journal, 19, 1937–1951.

Luo M, Zhao Y, Zhang R, Xing J, Duan M, Li J, Wang N, Wang W, Zhang S, Chen Z, Zhang H, Shi Z, Song W, Zhao J. 2017. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biology, 17, 1–10.

Luo X, Wang B, Gao S, Zhang F, Terzaghi W, Dai M. 2019. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. Journal of Integrative Plant Biology, 61, 658–674.

Matsuoka Y, Vigouroux Y, Goodman M M, Sanchez G J, Buckler E, Doebley J. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 99, 6080–6084.

Miller G A D, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33, 453–467.

Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30, 360–364.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S P. 2014. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist, 202, 35–49.

Palaisa K A, Morgante M, Williams M, Rafalski A. 2003. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. The Plant Cell, 15, 1795–1806.

Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer G J, Li J S, Yan J B. 2016. Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytologist, 210, 1083–1094.

Pang Y, Liu C, Wang D, Amand P S, Bernardo A, Li W, He F, Li L, Wang L, Yuan X, Dong L, Su Y, Zhang H, Zhao M, Liang Y, Jia H, Shen X, Lu Y, Jiang H, Wu Y, et al. 2020. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 13, 1311–1327.

Pérez-Enciso M, Zingaretti L M. 2019. A guide on deep learning for complex trait genomic prediction. Genes, 10, 553.

Quintero F J, Martinez-Atienza J, Villalta I, Jiang X, Kim W Y, Ali Z, Fujii H, Mendoza I, Yun D J, Zhu J K, Pardo J M. 2011. Activation of the plasma membrane Na+/H+ antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 108, 2611–2616.

Ranum P, Peña-Rosas J P, Garcia-Casal M N. 2014. Global maize production, utilization, and consumption. Annual of the New York Academy of Sciences, 1312, 105–112.

Ren L, Zhao T, Zhao Y, Du G, Yang S, Mu N, Tang D, Shen Y, Li Y, Cheng Z. 2021. The E3 ubiquitin ligase DESYNAPSIS1 regulates synapsis and recombination in rice meiosis. Cell Reports, 37, 109941.

Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 37, 1141–1146.

Santantonio N, Jannink J L, Sorrells M. 2019. A low resolution epistasis mapping approach to identify chromosome arm interactions in allohexaploid wheat. G3-Genes Genomes Genetics, 9, 675–684.

Sha X, Guan H, Zhou Y, Su E, Guo J, Li Y, Zhang D, Liu X, He G, Li Y, Wang T, Zou H, Li C. 2023. Genetic dissection of crown root traits and their relationship to aboveground agronomic traits in maize. Journal of Integrative Agriculture, 22, 3394–3407.

Shi H, Ishitani M, Kim C, Zhu J K. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 6896–6901.

Shi H, Quintero F J, Pardo J M, Zhu J K. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell, 14, 465–477.

Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43, 1160–1163.

Sun K, Mehari T G, Fang H, Han J, Huo X, Zhang J, Chen Y, Wang D, Zhuang Z, Ditta A, Khan M K R, Zhang J, Wang K, Wang B. 2023. Transcriptome, proteome and functional characterization reveals salt stress tolerance mechanisms in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 14, 1092616.

Suo J, Zhao Q, David L, Chen S, Dai S. 2017. Salinity response in chloroplasts: Insights from gene characterization. International Journal of Molecular Sciences, 18, 1011.

Syed A, Tainer J A. 2018. The MRE11–RAD50–NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annual Review of Biochemistry, 87, 263–294.

Tenaillon M I, U’Ren J, Tenaillon O, Gaut B S. 2004. Selection versus demography: A multilocus investigation of the domestication process in maize. Molecular Biology and Evolution, 21, 1214–1225.

Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365, 658–664.

Tsai H Y, Janss L L, Andersen J R, Orabi J, Jensen J D, Jahoor A, Jensen J. 2020. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports, 10, 1–15.

Wang F, Wan C, Niu H, Qi M, Li G, Zhang F, Hu L, Ye Y, Wang Z, Pei B, Chen X, Yuan C. 2023. OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice. Journal of Integrative Agriculture, 22, 341–359.

Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies-Yant K, Lukens L, Doebley J. 2005. The origin of the naked grains of maize. Nature, 436, 714–719.

Wang H, Studer A J, Zhao Q, Meeley R, Doebley J F. 2015. Evidence that the origin of naked kernels during maize domestication was caused by a single amino acid substitution in tga1. Genetics, 200, 965–974.

Wang L, Yang X, Cui S, Mu G, Sun X, Liu L, Li Z. 2019. QTL mapping and QTL×environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). The Crop Journal, 7, 249–260.

Wang S, Basten C J, Zeng Z B. 2012. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. [2012-8-1]. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 48, 1233–1241.

Wen W, Liu H, Zhou Y, Jin M, Yang N, Li D, Luo J, Xiao Y, Pan Q, Tohge T, Fernie A R, Yan J. 2016. Combining quantitative genetics approaches with regulatory network analysis to dissect the complex metabolism of the maize kernel. Plant Physiology, 170, 136–146.

Wu H. 2018. Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6, 215–225.

Wu H, Zhang X, Giraldo J P, Shabala S. 2018. It is not all about sodium: Revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 431, 1–17.

Würschum T, Maurer H P, Dreyer F, Reif J C. 2013. Effect of inter-and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 126, 435–441.

Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X, Tian F. 2017. Complex genetic architecture underlies maize tassel domestication. New Phytologist, 214, 852–864.

Xue Z Y, Zhi D Y, Xue G P, Zhang H, Zhao Y X, Xia G M. 2004. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science, 167, 849–859.

Yang C, Zhao L, Zhang H, Yang Z, Wang H, Wen S, Zhang C, Rustgi S, von Wettstein D, Liu B. 2014. Evolution of physiological responses to salt stress in hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 111, 11882–11887.

Yin X Y, Yang A F, Zhang K W, Zhang J R. 2004. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Botanica Sinica, 46, 854–861. (in Chinese)

Yu J, Buckler E S. 2006. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 17, 155–160.

Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38, 203–208.

Zhang H X, Blumwald E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19, 765–768.

Zhang M, Cao Y, Wang Z, Wang Z, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C. 2018. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist, 217, 1161–1176.

Zhang M, Li Y, Liang X, Lu M, Lai J, Song W, Jiang C. 2023. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal, 21, 97–108.

Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants, 5, 1297–1308.

Zhou C, Liu D, Zhang X, Wu Q, Liu S, Zeng Q, Wang Q, Wang C, Li C, Singh R P, Bhavani S, Kang Z, Han D, Zheng W, Wu J. 2022. Combined linkage and association mapping reveals two major QTL for stripe rust adult plant resistance in Shaanmai 155 and their haplotype variation in common wheat germplasm. The Crop Journal, 10, 783–792.

Zhu J, Wei X, Yin C, Zhou H, Yan J, He W, Yan J, Li H. 2023. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signaling pathways in Zea mays. Plant, Cell & Environment, 46, 1–17.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell, 167, 313–324.

[1] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[2] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[3] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[4] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[5] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[6] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[7] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[8] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[9] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
[10] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[11] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[12] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[13] Qilong Song, Jie Zhang, Fangfang Zhang, Yufang Shen, Shanchao Yue, Shiqing Li.

Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1671-1684.

[14] Jiangkuan Cui, Haohao Ren, Bo Wang, Fujie Chang, Xuehai Zhang, Haoguang Meng, Shijun Jiang, Jihua Tang.

Hatching and development of maize cyst nematode Heterodera zeae infecting different plant hosts [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1593-1603.

[15] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

No Suggested Reading articles found!