Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1930-1943    DOI: 10.1016/j.jia.2023.07.033
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
The development of a porcine 50K SNP panel using genotyping by target sequencing and its application
Zipeng Zhang1, Siyuan Xing2, Ao Qiu1, Ning Zhang3, Wenwen Wang4, Changsong Qian2, Jia’nan Zhang2, Chuduan Wang1, Qin Zhang4, Xiangdong Ding1#

1 State Key Laboratory of Animal Biotech Breeding/National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

2 MolBreeding Biotechnology Co., Ltd., Shijiazhuang 050035, China

3 Henan Institute of Pig Biological Breeding, College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China

 Highlights 
Developed the inaugural porcine 50K liquid chip (GBTS50K) based on genotyping by target sequencing, comprising 52,000 single-nucleotide polymorphisms (SNPs) with 8.8K loci strategically located in QTL regions linked to economically importanttraits.
GBTS50K demonstrates superior genotyping capability with key metrics exceeding 99% and exhibits robust utility in genetic analyses and molecular breeding.
The multiple SNPs (mSNPs) of GBTS50K enable haplotype-enhanced genomic selection (GS) without increasing genotyping costs, significantly improving prediction accuracy.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

靶向捕获测序(GBTS)基因分型技术同时具备固相芯片技术(高稳定性和可靠性)和测序技术(高灵活性和低成本)的优点。然而, GBTS技术尚未应用于猪SNP芯片上。在本研究中,我们基于GBTS技术开发了猪首款50K液相芯片——GBTS50K,包含52000个SNP位点。我们选取来自10个种猪场的6032头大白、长白和杜洛克猪对GBTS50K的性能进行评估。结果表明,GBTS50K获得了较好的基因分型性能,其SNP检出率和个体检出率0.997~0.998,重复样本的基因分型一致性和相关系数分别为0.997和0.993。我们还评估了GBTS50K在群体遗传结构、选择信号检测、全基因组关联分析、基因型填充和基因组选择等方面的应用效果。结果表明,GBTS50K在遗传分析和分子育种上表现优异。例如,对于达100公斤体重日龄和100公斤活体背膘厚两个重要经济性状,使用GBTS50K的基因组选择准确性高于目前使用广泛GGP-Porcine固相芯片。并且,由于GBTS技术能够检测到多聚SNP位点GBTS50K在不增加基因分型成本的情况下能够获得更多高质量SNP位点(~100K)。利用这些SNP位点进行单倍型基因组选择,生长和繁殖性状基因组选择的准确性可以进一步提高2-6%。我们的研究表明,GBTS50K可以成为猪遗传分析和分子育种的有力工具,同时,也能够给其它畜禽液相芯片开发提供借鉴。



Abstract  

Genotyping by target sequencing (GBTS) integrates the advantages of silicon-based technology (high stability and reliability) and genotyping by sequencing (high flexibility and cost-effectiveness).  However, GBTS panels are not currently available in pigs.  In this study, based on GBTS technology, we first developed a 50K panel, including 52,000 single-nucleotide polymorphisms (SNPs), in pigs, designated GBTS50K.  A total of 6,032 individuals of Large White, Landrace, and Duroc pigs from 10 breeding farms were used to assess the newly developed GBTS50K.  Our results showed that GBTS50K obtained a high genotyping ability, the SNP and individual call rates of GBTS50K were 0.997–0.998, and the average consistency rate and genotyping correlation coefficient were 0.997 and 0.993, respectively, in replicate samples.  We also evaluated the efficiencies of GBTS50K in the application of population genetic structure analysis, selection signature detection, genome-wide association studies (GWAS), genotyped imputation, genetic selection (GS), etc.  The results indicate that GBTS50K is plausible and powerful in genetic analysis and molecular breeding.  For example, GBTS50K could gain higher accuracies than the current popular GGP-Porcine bead chip in genomic selection on 2 important traits of backfat thickness at 100 kg and days to 100 kg in pigs.  Particularly, due to the multiple SNPs (mSNPs), GBTS50K generated 100K qualified SNPs without increasing genotyping cost, and our results showed that the haplotype-based method can further improve the accuracies of genomic selection on growth and reproduction traits by 2 to 6%.  Our study showed that GBTS50K could be a powerful tool for underlying genetic architecture and molecular breeding in pigs, and it is also helpful for developing SNP panels for other farm animals.

Keywords:  genotyping by target sequencing        GBTS50K        pig  
Received: 03 March 2023   Online: 26 July 2023   Accepted: 19 June 2023
Fund: 

This work was supported by the grants from the Key R&D Program of Shandong Province, China (2022LZGC003),  the China Agriculture Research System of MOF and MARA (CARS-35), the National Key Research and Development Project of China (2019YFE0106800), and the 2115 Talent Development Program of China Agricultural University.

About author:  Zipeng Zhang, E-mail: zzp13226665505@126.com; #Correspondence Xiangdong Ding, Tel: +86-10-62734277, E-mail: xding@cau.edu.cn

Cite this article: 

Zipeng Zhang, Siyuan Xing, Ao Qiu, Ning Zhang, Wenwen Wang, Changsong Qian, Jia’nan Zhang, Chuduan Wang, Qin Zhang, Xiangdong Ding. 2025. The development of a porcine 50K SNP panel using genotyping by target sequencing and its application. Journal of Integrative Agriculture, 24(5): 1930-1943.

Baird N A, Etter P D, Atwood T S, Currey M C, Shiver A L, Lewis Z A, Selker E U, Cresko W A, Johnson E A. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE3, e3376.

Bimber B N, Raboin M J, Letaw J, Nevonen K A, Spindel J E, Mccouch S R, Cervera-Juanes R, Spindel E, Carbone L, Ferguson B, Vinson A. 2016. Whole-genome characterization in pedigreed non-human primates using genotyping-by-sequencing (GBS) and imputation. BMC Genomics17, 676.

Bland J M, Altman D G. 1995. Multiple significance tests: The Bonferroni method. British Medical Journal310, 170.

Boichard D, Guillaume F, Baur A, Croiseau P, Rossignol M N, Boscher M Y, Druet T, Genestout L, Colleau J J, Journaux L, Ducrocq V, Fritz S. 2012. Genomic selection in French dairy cattle. Animal Production Science52, 115–120.

Borrenpohl D, Huang M, Olson E, Sneller C. 2020. The value of early-stage phenotyping for wheat breeding in the age of genomic selection. Theoretical and Applied Genetics133, 2499–2520.

Browning B L, Zhou Y, Browning S R. 2018. A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics103, 338–348.

Chen X, Sullivan P F. 2003. Single nucleotide polymorphism genotyping: Biochemistry, protocol, cost and throughput. The Pharmacogenomics Journal3, 77–96.

Chen Y, Qiu A, Zhang Z, Du H, Bai J, Wang G, Luo W, Ni J, Li K, Ding X. 2022. Study on the genotype imputation effect of 10K–50K genotype of pig SNP liquid chip. Acta Veterinaria et Zootechnica Sinica53, 3368–3376.

Christensen O F, Lund M S. 2010. Genomic prediction when some animals are not genotyped. Genetics Selection Evolution 42, 2.

Cuyabano B C, Su G, Lund M S. 2014. Genomic prediction of genetic merit using LD-based haplotypes in the Nordic Holstein population. BMC Genomics15, 1171.

Danecek P, Auton A, Abecasis G, Albers C A, Banks E, Depristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, Mcvean G, Durbin R, 1,000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics27, 2156–2158.

Davey J W, Hohenlohe P A, Etter P D, Boone J Q, Catchen J M, Blaxter M L. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics12, 499–510.

Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE6, e19379.

Forni S, Aguilar I, Misztal I. 2011. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evolution43, 1.

Guo X, Christensen O F, Ostersen T, Wang Y, Lund M S, Su G. 2015. Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method. Journal of Animal Science93, 503–512.

Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, Zou C, Zhang J, Xu Y. 2019. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding39, 37.

Guo Z, Yang Q, Huang F, Zheng H, Sang Z, Xu Y, Zhang C, Wu K, Tao J, Prasanna B M, Olsen M S, Wang Y, Zhang J, Xu Y. 2021. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Communications2, 100230.

Haile A, Hilali M, Hassen H, Lobo R N B, Rischkowsky B. 2019. Estimates of genetic parameters and genetic trends for growth, reproduction, milk production and milk composition traits of Awassi sheep. Animal13, 240–247.

Hayr M K. 2016. Genomic Prediction Using Haplotypes in New Zealand Dairy Cattle. ProQuest LLC Publishing, Ann Arbor, US. pp.13.

Hirschhorn J N, Daly M J. 2005. Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics6, 95–108.

Jonas D, Ducrocq V, Croiseau P. 2017. Short communication: The combined use of linkage disequilibrium-based haploblocks and allele frequency-based haplotype selection methods enhances genomic evaluation accuracy in dairy cattle. Journal of Dairy Science100, 2905–2908.

Kumar J, Pratap A, Solanki R K, Gupta D S, Goyal A, Chaturvedi S K, Nadarajan N, Kumar S. 2011. Genomic resources for improving food legume crops. The Journal of Agricultural Science150, 289–318.

Legarra A, Aguilar I, Misztal I. 2009. A relationship matrix including full pedigree and genomic information. Journal of Animal Science92, 4656–4663.

Li C, Tian D, Tang B, Liu X, Teng X, Zhao W, Zhang Z, Song S. 2021. Genome variation map: A worldwide collection of genome variations across multiple species. Nucleic Acids Research49, D1186–D1191.

Liang F, Kume S, Koya D. 2009. SIRT1 and insulin resistance. Nature Reviews Endocrinology5, 367–373.

Madsen P, Jensen J, Labouriau R, Christensen O F, Sahana G. 2014. DMU - a package for analyzing multivariate mixed models in quantitative genetics and genomics. In: 10th World Congress of Genetics Applied to Livestock Production. Canada.

Manimekalai R, Suresh G, Govinda Kurup H, Athiappan S, Kandalam M. 2020. Role of NGS and SNP genotyping methods in sugarcane improvement programs. Critical Reviews in Biotechnology40, 865–880.

Marchini J, Howie B. 2010. Genotype imputation for genome-wide association studies. Nature Reviews Genetics11, 499–511.

Meuwissen T, Hayes B, Goddard M. 2013. Accelerating improvement of livestock with genomic selection. Annual Review of Animal Biosciences1, 221–237.

Mucha A, Wierzbicki H, Kaminski S, Olenski K, Hering D. 2019. High-frequency marker haplotypes in the genomic selection of dairy cattle. Journal of Applied Genetics60, 179–186.

Nadeem M A, Nawaz M A, Shahid M Q, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch F S. 2017. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment32, 261–285.

Naj A C. 2019. Genotype imputation in genome-wide association studies. Current Protocols in Human Genetics102, e84.

Norman A, Taylor J, Edwards J, Kuchel H. 2018. Optimising genomic selection in wheat: Effect of marker density, population size and population structure on prediction accuracy. G3–Genes Genomes Genetics8, 2889–2899.

Oh J D, Na C S, Park K D. 2017. Validation of selection accuracy for the total number of piglets born in Landrace pigs using genomic selection. Asian–Australasian Journal of Animal Sciences30, 149–153.

Patel S, Jana S, Chetty R, Thakore S, Singh M, Devkar R. 2018. TiO(2) nanoparticles induce omphalocele in chicken embryo by disrupting Wnt signaling pathway. Scientific Reports8, 4756.

Quezada M, Aguilar I, Balmelli G. 2022. Genomic breeding values’ prediction including populational selfing rate in an open-pollinated Eucalyptus globulus breeding population. Tree Genetics & Genomes18, 10.

Ragoussis J. 2009. Genotyping technologies for genetic research. Annual Review of Genomics and Human Genetics10, 117–133.

Ramos A M, Crooijmans R P, Affara N A, Amaral A J, Archibald A L, Beever J E, Bendixen C, Churcher C, Clark R, Dehais P, Hansen M S, Hedegaard J, Hu Z L, Kerstens H H, Law A S, Megens H J, Milan D, Nonneman D J, Rohrer G A, Rothschild M F, et al. 2009. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE4, e6524.

Robledo D, Palaiokostas C, Bargelloni L, Martinez P, Houston R. 2018. Applications of genotyping by sequencing in aquaculture breeding and genetics. Reviews in Aquaculture10, 670–682.

Solberg T R, Sonesson A K, Woolliams J A, Meuwissen T H. 2008. Genomic selection using different marker types and densities. Journal of Animal Science86, 2447–2454.

Song H, Dong T, Yan X, Wang W, Tian Z, Sun A, Dong Y, Zhu H, Hu H. 2022. Genomic selection and its research progress in aquaculture breeding. Reviews in Aquaculture15, 274–291.

Weng Z, Zhang Z, Zhang Q, Fu W, He S, Ding X. 2013. Comparison of different imputation methods from low- to high-density panels using Chinese Holstein cattle. Animal7, 729–735.

Xiang T, Ma P, Ostersen T, Legarra A, Christensen O F. 2015. Imputation of genotypes in Danish purebred and two-way crossbred pigs using low-density panels. Genetics Selection Evolution47, 54.

Yang J, Lee S H, Goddard M E, Visscher P M. 2011. GCTA: A tool for genome-wide complex trait analysis. The American Journal of Human Genetics88, 76–82.

Yu Y, Luo Z, Wang Q, Zhang Q, Zhang X, Xiang J, Li F. 2020. Development of high throughput SNP genotyping approach using target sequencing in Pacific white shrimp and its application for genetic study. Aquaculture528, 735549.

Zhang H, Yin L, Wang M, Yuan X, Liu X. 2019. Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Frontiers in Genetics10, 189.

Zhang J, Yang J, Zhang L, Luo J, Zhao H, Zhang J, Wen C. 2020. A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Scientific Reports10, 5623.

Zhang Z, Chen Z T, Diao S Q, Ye S P, Wang J Y, Gao N, Yuan X L, Chen Z M, Zhang H, Li J Q. 2021. Identifying the complex genetic architecture of growth and fatness traits in a Duroc pig population. Journal of Integrative Agriculture20, 1607–1614.

Zhang Z, Shi S, Zhang Q, Aamand G P, Lund M S, Su G, Ding X. 2023. Improving genomic prediction accuracy in the chinese holstein population by combining with the nordic holstein reference population. Animals13, 636.

[1] WANG Peng-fei, WANG Ming, SHI Zhi-bin, SUN Zhen-zhao, WEI Li-li, LIU Zai-si, WANG Shi-da, HE Xi-jun, WANG Jing-fei. Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs[J]. >Journal of Integrative Agriculture, 2022, 21(3): 819-825.
[2] WANG Xiao-bo, WU Nan, CAI Rui-jie, GENG Wei-na, XU Xiao-yan. Changes in speciation, mobility and bioavailability of Cd, Cr and As during the transformation process of pig manure by black soldier fly larvae (Hermetia illucens)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1157-1166.
[3] ZHU Mei-chen, HU Ran, ZHAO Hui-yan, TANG Yun-shan, SHI Xiang-tian, JIANG Hai-yan, ZHANG Zhi-yuan, FU Fu-you, XU Xin-fu, TANG Zhang-lin, LIU Lie-zhao, LU Kun, LI Jia-na, QU Cun-min. Identification of quantitative trait loci and candidate genes controlling seed pigments of rapeseed[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2862-2879.
[4] Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng. Crop photosynthetic response to light quality and light intensity[J]. >Journal of Integrative Agriculture, 2021, 20(1): 4-23.
[5] LI Cen-cen, YU Shu-long, REN Hai-feng, WU Wei, WANG Ya-ling, HAN Qiu, XU Hai-xia, XU Yong-jie, ZHANG Peng-peng. Identification and functional prediction of long intergenic noncoding RNAs in fetal porcine longissimus dorsi muscle[J]. >Journal of Integrative Agriculture, 2021, 20(1): 201-211.
[6] DAI Xiao-wen, Zhanli SUN, Daniel MÜLLER. Driving factors of direct greenhouse gas emissions from China’s pig industry from 1976 to 2016[J]. >Journal of Integrative Agriculture, 2021, 20(1): 319-329.
[7] NAN Jiu-hong, YIN Li-lin, TANG Zhen-shuang, CHEN Jian-hai, ZHANG Jie, WANG Hai-yan, DU Xiao-yong, LIU Xiang-dong . Genetic parameter estimation and genome-wide association study (GWAS) of red blood cell count at three stages in a Duroc×Erhualian pig population[J]. >Journal of Integrative Agriculture, 2020, 19(3): 793-799.
[8] ZHUO Ni, JI Chen, DING Jing-yu. Pig farmers’ willingness to recover their production under COVID-19 pandemic shock in China-Empirical evidence from a farm survey[J]. >Journal of Integrative Agriculture, 2020, 19(12): 2891-2902.
[9] ZHENG Yao, CHEN Cai, CHEN Wei, WANG Xiao-yan, WANG Wei, GAO Bo, Klaus WIMMERS, MAO Jiu-de, SONG Cheng-yi. Two new SINE insertion polymorphisms in pig Vertnin (VRTN) gene revealed by comparative genomic alignment[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2514-2522.
[10] WANG Man, YU Bing, HE Jun, YU Jie, LUO Yu-heng, LUO Jun-qiu, MAO Xiang-bin, CHEN Dai-wen. The toxicological effect of dietary excess of saccharicterpenin, the extract of camellia seed meal, in piglets[J]. >Journal of Integrative Agriculture, 2020, 19(1): 211-224.
[11] ZENG Zhu, JIANG Jun-jie, YU Jie, MAO Xiang-bing, YU Bing, CHEN Dai-wen. Effect of dietary supplementation with mulberry (Morus alba L.) leaves on the growth performance, meat quality and antioxidative capacity of finishing pigs[J]. >Journal of Integrative Agriculture, 2019, 18(1): 143-151.
[12] SHAN Nan, LI Hu, LI Jian-zheng, Ee Ling Ng, MA Yan, WANG Li-gang, CHEN Qing. A major pathway for carbon and nitrogen losses- Gas emissions during storage of solid pig manure in China[J]. >Journal of Integrative Agriculture, 2019, 18(1): 190-200.
[13] JI Chen, CHEN Qin, Jacques Trienekens, WANG Hai-tao. Determinants of cooperative pig farmers' safe production behaviour in China – Evidences from perspective of cooperatives' services[J]. >Journal of Integrative Agriculture, 2018, 17(10): 2345-2355.
[14] WANG Yan-fang, HUANG Jiao-jiao, ZHAO Jian-guo. Gene engineering in swine for agriculture[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2792-2804.
[15] LU Yun-feng, CHEN Ji-bao, ZHANG Bo, LI Qing-gang, WANG Zhi-xiu, ZHANG Hao, WU Ke-liang . Cloning, expression, and polymorphism of the ECI1 gene in various pig breeds[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1789-1799.
No Suggested Reading articles found!