Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4018-4031    DOI: 10.1016/j.jia.2023.12.002
Special Issue: 小麦耕作栽培Wheat Physiology · Biochemistry · Cultivation · Tillage
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat

Junming Liu1, 2, Zhuanyun Si1#, Shuang Li3, Lifeng Wu4, Yingying Zhang1, Xiaolei Wu1, 2, Hui Cao1, 2, Yang Gao1#, Aiwang Duan1

1 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China

2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 Shandong Academy of Agricultural Machinery Sciences, Jinan 250000, China

4 Binzhou Academy of Agricultural Sciences, Binzhou 256600, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高低畦是在生产实践中摸索出来具有提高土地利用率和产量的冬小麦种植模式。尽管已被山东省列为农业主推技术,但由于提出时间尚短,其产量形成、籽粒灌浆过程等对水氮供应的响应机制还不清楚,很大程度上制约了这一模式的完善与推广应用。为探索高低畦冬小麦最佳的水氮组合,于2020—2023年开展田间试验,设置4个施氮水平(N1360 kg ha-1N2300 kg ha-1N1240 kg ha-1N1180 kg ha-1)和3个灌水定额(W1120 mmW290 mmW360 mm,分析了冬小麦籽粒灌浆特征参数、穗重百分比(GPS%)、穗相对含水量(SMC%)和产量等指标。结果表明:(1)籽粒灌浆过程可以用确定性方程准确描述(0.989<R2<0.999)。随灌水水平或施氮水平的增加而增加,最大灌浆速率出现时间(Tmax)和灌浆持续时间(AGP)呈现增加的趋势,而平均灌浆速率(Gmean)则呈现下降的趋势;千粒重(FTGW)随灌水水平或施氮水平的增加呈现先增加后减少的趋势。(2GPSSMC与粒重或开花后天数呈极显著的二次多项式关系。灌水水平、施氮水平和年型显著影响TmaxAGPGmeanFTGW。在所有灌水和施氮处理中,高畦田和低畦田的AGPFTGW没有明显差异。(3W1N1W1N2W2N1的产量差异不显著(p>0.05),说明适量节水减氮并不会显著降低产量。主成分分析表明,当施氮水平为240~300 kg N ha-1,灌水水平为90120 mm时,能够有效提高冬小麦籽粒灌浆效率并提高籽粒产量。研究为冬小麦高低畦种植模式下水氮优化管理策略的构建提供理论依据和技术支撑。



Abstract  
A high-efficiency mode of high-low seedbed cultivation (HLSC) has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province, China.  However, limited information is available on the optimized water and nitrogen management for yield formation, especially the grain-filling process, under HLSC mode.  A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters, grain weight percentage of spike weight (GPS), spike moisture content (SMC), and winter wheat yield to water and nitrogen rates.  The four nitrogen rates were N1 (360 kg ha–1 pure N), N2 (300 kg ha–1 pure N), N3 (240 kg ha–1 pure N), and N4 (180 kg ha–1 pure N), respectively, and the three irrigation quotas were W1 (120 mm), W2 (90 mm), and W3 (60 mm), respectively.  Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight (0.989<R2<0.999, where R2 is the determination coefficient).  The occurrence time of maximum filling rate (Tmax) and active grain-filling period (AGP) increased with the increase in the water or nitrogen rate, whereas the average grain-filling rate (Gmean) had a decreasing trend.  The final 1,000-grain weight (FTGW) increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.  The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.  Nitrogen, irrigation, and year significantly affected the Tmax, AGP, Gmean, and FTGW.  Particularly, the AGP and FTGW were insignificantly different between high seedbed (HLSC-H) and low seedbed (HLSC-L) across the water and nitrogen levels.  Moreover, the moderate water and nitrogen supply was more beneficial for grain yield, as well as for spike number and grain number per hectare.  The principal component analysis indicated that combining 240–300 kg N ha–1 and 90–120 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat.  


Keywords:  high-low seedbed cultivation       water and nitrogen        grain filling        determinate growth equation        wheat yield  
Received: 17 July 2023   Accepted: 31 October 2023
Fund: 
This work was supported by the National Key Research and Development Program of China (2023YFD1900802), the China Agriculture Research System of MOF and MARA (CARS-03-19), the National Natural Science Foundation of China (51879267), the Central Public-interest Scientific Institution Basal Research Fund, China (IFI2023-13), and the Agricultural Science and Technology Innovation Program (ASTIP), Chinese Academy of Agricultural Sciences.
About author:  #Correspondence Yang Gao, Tel/Fax: +86-373-3393224, E-mail: gaoyang@caas.cn; Zhuanyun Si, E-mail: sizhuanyun@caas.cn

Cite this article: 

Junming Liu, Zhuanyun Si, Shuang Li, Lifeng Wu, Yingying Zhang, Xiaolei Wu, Hui Cao, Yang Gao, Aiwang Duan. 2024. Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat. Journal of Integrative Agriculture, 23(12): 4018-4031.

Abid M, Shao Y, Liu S, Wang F, Gao J, Jiang D, Tian Z, Dai T. 2017. Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta246, 509–524.

Abubakar S A, Hamani A K M, Chen J, Sun W, Wang G, Gao Y, Duan A. 2022. Optimizing N-fertigation scheduling maintains yield and mitigates global warming potential of winter wheat field in North China Plain. Journal of Cleaner Production357, 131906.

Ali A M, Abouelghar M, Belal A A, Saleh N, Yones M, Selim A I, Amin M E S, Elwesemy A, Kucher D E, Maginan S, Savin I. 2022. Crop yield prediction using multi sensors remote sensing (review article). The Egyptian Journal of Remote Sensing and Space Science25, 711–716.

Ali S, Ma X, Jia Q, Ahmad I, Ahmad S, Sha Z, Yun B, Muhammad A, Ren X, Shah S, Akbar H, Cai T, Zhang J, Jia Z. 2019. Supplemental irrigation strategy for improving grain filling, economic return, and production in winter wheat under the ridge and furrow rainwater harvesting system. Agricultural Water Management226, 105842.

Ebmeyer H, Fiedler-Wiechers K, Hoffmann C M. 2021. Drought tolerance of sugar beet – Evaluation of genotypic differences in yield potential and yield stability under varying environmental conditions. European Journal of Agronomy125, 126262.

Effah Z, Li L, Xie J, Karikari B, Liu C, Xu A, Zeng M. 2022. Transcriptome profiling reveals major structural genes, transcription factors and biosynthetic pathways involved in leaf senescence and nitrogen remobilization in rainfed spring wheat under different nitrogen fertilization rates. Genomics114, 110271.

Fang H, Gu X, Jiang T, Yang J, Li Y, Huang P, Chen P, Yang J. 2020. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau, China. Soil and Tillage Research199, 104546.

Farooq M, Hussain M, Siddique K H M. 2014. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences33, 331–349.

Fu P, Wang J, Zhang T, Huang J, Peng S. 2019. High nitrogen input causes poor grain filling of spikelets at the panicle base of super hybrid rice. Field Crops Research244, 107635.

Gasura E, Setimela P, Edema R, Gibson P T, Okori P, Tarekegne A. 2013. Exploiting grain-filling rate and effective grain-filling duration to improve grain yield of early-maturing maize. Crop Science53, 2295–2303.

Guo Y N, Hou L Y, Li L L, Gao S, Hou J F, Ming B, Xie R Z, Xue J, Hou P, Wang K R, Li S K. 2022. Study of corn kernel breakage susceptibility as a function of its moisture content by using a laboratory grinding method. Journal of Integrative Agriculture21, 70–77.

Hamani A K M, Abubakar S A, Si Z, Kama R, Gao Y, Duan A. 2023. Suitable split nitrogen application increases grain yield and photosynthetic capacity in drip-irrigated winter wheat (Triticum aestivum L.) under different water regimes in the North China Plain. Frontiers in Plant Science13, 1105006.

He J, Shi Y, Zhao J, Yu Z. 2020. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling. The Crop Journal8, 327–340.

Jia Q, Sun L, Mou H, Ali S, Liu D, Zhang Y, Zhang P, Ren X, Jia Z. 2018. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agricultural Water Management201, 287–298.

Jiang Q, Du Y, Tian X, Wang Q, Xiong R, Xu G, Yan C, Ding Y. 2016. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. European Journal of Agronomy74, 185–192.

Karthikeyan L, Chawla I, Mishra A K. 2020. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. Journal of Hydrology586, 124905.

Kiymaz S, Ertek A. 2015. Yield and quality of sugar beet (Beta vulgaris L.) at different water and nitrogen levels under the climatic conditions of Kırsehir, Turkey. Agricultural Water Management158, 156–165.

Koppensteiner L J, Kaul H P, Piepho H P, Barta N, Euteneuer P, Bernas J, Klimek-Kopyra A, Gronauer A, Neugschwandtner R W. 2022. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. European Journal of Agronomy140, 126591.

Li C, Wang Q, Wang N, Luo X, Li Y, Zhang T, Feng H, Dong Q G. 2021. Effects of different plastic film mulching on soil hydrothermal conditions and grain-filling process in an arid irrigation district. Science of the Total Environment795, 148886.

Li L, Ming B, Xie R, Wang K, Hou P, Gao S, Chu Z, Zhang W, Huang Z, Li H, Zhou X, Li S. 2021. The stability and variability of maize kernel moisture content at physiological maturity. Crop Science61, 704–714.

Liang W, Zhang Z, Wen X, Liao Y, Liu Y. 2017. Effect of non-structural carbohydrate accumulation in the stem pre-anthesis on grain filling of wheat inferior grain. Field Crops Research211, 66–76.

Liang Z, Bao A, Li H, Cai H. 2015. The effect of nitrogen level on rice growth, carbon–nitrogen metabolism and gene expression. Biologia70, 1340–1350.

Liu J, Si Z, Wu L, Chen J, Gao Y, Duan A. 2021. Using stable isotopes to quantify root water uptake under a new planting pattern of high-low seed beds cultivation in winter wheat. Soil and Tillage Research205, 104816.

Liu J, Si Z, Wu L, Shen X, Gao Y, Duan A. 2023. High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain. Agricultural Water Management285, 108357.

Liyana-Pathirana C, Shahidi F. 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry93, 47–56.

Meng Z, Sun J, Duan A, Liu Z, Wang H. 2010. Grain filling characteristics of winter wheat with regulated deficit irrigation and its simulation models. Transactions of the Chinese Society of Agricultural Engineering26, 18–23.

Perra M, Leyva-Jiménez F J, Manca M L, Manconi M, Rajha H N, Borrás-Linares I, Segura-Carretero A, Lozano-Sánchez J. 2023. Application of pressurized liquid extraction to grape by-products as a circular economy model to provide phenolic compounds enriched ingredient. Journal of Cleaner Production402, 136712.

Prado S A, López C G, Senior M L, Borrás L. 2014. The genetic architecture of maize (Zea mays L.) kernel weight determination. G3 Genes|Genomes|Genetics4, 1611–1621.

Saeed Q, Zhang A, Mustafa A, Sun B, Zhang S, Yang X. 2022. Effect of long-term fertilization on greenhouse gas emissions and carbon footprints in Northwest China: A field scale investigation using wheat–maize–fallow rotation cycles. Journal of Cleaner Production332, 130075.

Sala R G, Andrade F H, Westgate M E. 2007. Maize kernel moisture at physiological maturity as affected by the source–sink relationship during grain filling. Crop Science47, 711–714.

Sanchez-Bragado R, Vicente R, Molero G, Serret M D, Maydup M L, Araus J L. 2020. New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Current Opinion in Plant Biology56, 223–234.

Shewry P R. 2018. Do ancient types of wheat have health benefits compared with modern bread wheat? Journal of Cereal Science79, 469–476.

Shewry P R, America A H P, Lovegrove A, Wood A J, Plummer A, Evans J, Van Den Broeck H C, Gilissen L, Mumm R, Ward J L, Proos Z, Kuiper P, Longin C F H, Andersson A A M, Van Straaten J P, Jonkers D, Brouns F. 2022. Comparative compositions of metabolites and dietary fibre components in doughs and breads produced from bread wheat, emmer and spelt and using yeast and sourdough processes. Food Chemistry374, 131710.

Si Z, Liu J, Wu L, Li S, Wang G, Yu J, Gao Y, Duan A. 2023. A high-yield and high-efficiency cultivation pattern of winter wheat in North China Plain: High–low seedbed cultivation. Field Crops Research300, 109010.

Sylvester-Bradley R, Kindred D R. 2009. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany60, 1939–1951.

Teng Z, Chen Y, Meng S, Duan M, Zhang J, Ye N. 2023. Environmental stimuli: A major challenge during grain filling in cereals. International Journal of Molecular Sciences24, 2255.

Thapa S, Jessup K E, Pradhan G P, Rudd J C, Liu S, Mahan J R, Devkota R N, Baker J A, Xue Q. 2018. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains. Field Crops Research217, 11–19.

Tsukaguchi T, Murakami K, Michimoto T. 2016. A quantitative measure for assimilate partitioning efficiency in rice (Oryza sativa L.). Field Crops Research198, 122–130.

Wang H, Wu L, Cheng M, Fan J, Zhang F, Zou Y, Chau H W, Gao Z, Wang X. 2018. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Research219, 169–179.

Wu L, Han X, Islam S, Zhai S, Zhao H, Zhang G, Cui G, Zhang F, Han W, You X, Ju Z, Lv P, Zhou J, Gao Q, Cui B, Wu Y, Yang Z, Liu Q, Yang F, Zhang J, et al. 2021. Effects of sowing mode on lodging resistance and grain yield in winter wheat. Agronomy11, 1378.

Yadav G, Ellis R H. 2017. Effects of rain shelter or simulated rain during grain filling and maturation on subsequent wheat grain quality in the UK. The Journal of Agricultural Science155, 300–316.

Yagioka A, Hayashi S, Kimiwada K, Kondo M. 2021. Sink production and grain-filling ability of a new high-yielding rice variety, Kitagenki. Field Crops Research260, 107991.

Yan F, Liu X, Bai W, Fan J, Zhang F, Xiang Y, Hou X, Pei S, Dai Y, Zeng H, Wang Y. 2022. Multi-objective optimization of water and nitrogen regimes for drip-fertigated sugar beet in a desert climate. Field Crops Research288, 108703.

Yan S, Wu Y, Fan J, Zhang F, Qiang S, Zheng J, Xiang Y, Guo J, Zou H. 2019. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agricultural Water Management213, 983–995.

Yousfi S, Marín J, Parra L, Lloret J, Mauri P V. 2022. Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes. Agricultural Water Management266, 107581.

Zang Y G, Wu G Z, Li Q Q, Xu Y W, Xue M M, Chen X Y, Wei H Y, Zhang W Y, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C. 2024. Irrigation regimes modulate non-structural carbohydrates remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolisms. Journal of Integrative Agriculture23, 1507–1522.

Zhang G, Hou Y, Zhang H, Fan H, Wen X, Han J, Liao Y. 2022. Optimizing planting pattern and nitrogen application rate improves grain yield and water use efficiency for rain-fed spring maize by promoting root growth and reducing redundant root growth. Soil and Tillage Research220, 105385.

Zhang J, Zhang Y Y, Song N Y, Chen Q L, Sun H Z, Peng T, Huang S, Zhao Q Z. 2021. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. Journal of Integrative Agriculture20, 1465–1473.

Zhang Z, Zhang Y, Liu X, Li Z, Lin W. 2017. The use of comparative quantitative proteomics analysis in rice grain-filling in determining response to moderate soil drying stress. Plant Growth Regulation82, 219–232.

No related articles found!
No Suggested Reading articles found!