Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 2877-2897    DOI: 10.1016/j.jia.2023.12.028
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Advances in the study of waterlogging tolerance in plants
Zhengyuan Xu1, 2, Lingzhen Ye1, 2, Qiufang Shen1, 2, Guoping Zhang1, 2
1 Key Laboratory of Crop Germplasm Resource of Zhejiang Province/Department of Agronomy, Zhejiang University, Hangzhou 310058, China
2 Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
渍水胁迫是威胁全球作物产量的主要非生物胁迫之一。渍水胁迫下,植物发生氧化胁迫、重金属毒害和能量缺乏,导致代谢紊乱,生长受到抑制。另一方面,植物在进化过程中形成了渍水耐性或适应机制,包括形态学和呼吸途径的变化,抗氧化保护以及内源激素调控。本综述介绍渍水胁迫的不利影响和植物耐渍性机制的最新研究进展,并阐述了植物种间或种内不同基因型之间耐渍性差异的遗传机理,还特别报道了植物中已鉴定到的与耐渍性相关的数量性状位点和关键基因。


Abstract  
Waterlogging is one of the major abiotic stresses threatening crop yields globally.  Under waterlogging stress, plants suffer from oxidative stress, heavy metal toxicity and energy deficiency, leading to metabolic disorders and growth inhibition.  On the other hand, plants have evolved waterlogging-tolerance or adaptive mechanisms, including morphological changes, alternation of respiratory pathways, antioxidant protection and endogenous hormonal regulation.  In this review, recent advances in studies on the effects of waterlogging stress and the mechanisms of waterlogging tolerance in plants are presented, and the genetic differences in waterlogging tolerance among plant species or genotypes within a species are illustrated.  We also summarize the identified QTLs and key genes associated with waterlogging tolerance.  
Keywords:  waterlogging       adverse effects        cereals        mechanisms        gene expression  
Received: 01 August 2023   Accepted: 17 November 2023
Fund: 
This study was supported by the Key Research Projects of Zhejiang Province, China (2021C02064-3 and 2021C02057), the China Agriculture Research System (CARS-05), and the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (JCIC-MCP).
About author:  Zhengyuan Xu, E-mail: 11816026@zju.edu.cn; #Correspondence Guoping Zhang, Tel/Fax: +86-571-88982115, E-mail: zhanggp@zju.edu.cn

Cite this article: 

Zhengyuan Xu, Lingzhen Ye, Qiufang Shen, Guoping Zhang. 2024. Advances in the study of waterlogging tolerance in plants. Journal of Integrative Agriculture, 23(9): 2877-2897.

Angaji S A, Septiningsih E M, Mackill D J, Ismail A M. 2010. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica172, 159–168.

Arbona V, Hossain Z, Lopez-Climent M F, Perez-Clemente R M, Gomez-Cadenas A. 2008. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum132, 452–466.

Bailey-Serres J, Chang R. 2005. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals of Botany96, 507–518.

Bailey-Serres J, Colmer T D. 2014. Plant tolerance of flooding stress - Recent advances. Plant Cell and Environment37, 2211–2215.

Bailey-Serres J, Fukao T, Gibbs D J, Holdsworth M J, Lee S C, Licausi F, Perata P, Voesenek L A C J, van Dongen J T. 2012. Making sense of low oxygen sensing. Trends in Plant Science17, 129–138.

Bailey-Serres J, Voesenek L A C J. 2008. Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology59, 313–339.

Ballesteros D C, Mason R E, Addison C K, Acuña M A, Arguello M N, Subramanian N, Miller R G, Sater H, Gbur E E, Miller D, Griffey C A, Barnett M D, Tucker D. 2015. Tolerance of wheat to vegetative stage soil waterlogging is conditioned by both constitutive and adaptive QTL. Euphytica201, 329–343.

Borisjuk L, Macherel D, Benamar A, Wobus U, Rolletschek H. 2007. Low oxygen sensing and balancing in plant seeds: A role for nitric oxide. New Phytologist176, 813–823.

Borrego-Benjumea A, Carter A, Tucker J R, Yao Z, Xu W, Badea A. 2020. Genome-wide analysis of gene expression provides new insights into waterlogging responses in barley (Hordeum vulgare L.). Plants9, 240.

Borrego-Benjumea A, Carter A, Zhu M, Tucker J R, Zhou M X, Badea A. 2021. Genome-wide association study of waterlogging tolerance in barley (Hordeum vulgare L.) under controlled field conditions. Frontiers in Plant Science12, 711654.

Broughton S, Zhou G F, Teakle N L, Matsuda R, Zhou M X, O Leary R A, Colmer T D, Li C D. 2015. Waterlogging tolerance is associated with root porosity in barley (Hordeum vulgare L.). Molecular Breeding35, 1–15.

Brownstein G, Wilson J B, Burritt D J. 2013. Waterlogging tolerance on a New Zealand saltmarsh. Journal of Experimental Marine Biology and Ecology446, 202–208.

Campbell M T, Proctor C A, Dou Y, Schmitz A J, Phansak P, Kruger G R, Zhang C, Walia H. 2015. Genetic and molecular characterization of submergence response identifies subtol6 as a major submergence tolerance locus in maize. PLoS ONE10, e0120385.

Chen S, Xu Z Y, Adil M F, Zhang G P. 2021. Cultivar-, stress duration- and leaf age-specific hub genes and co-expression networks responding to waterlogging in barley. Environmental and Experimental Botany191, 104599.

Colmer T D. 2003. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell and Environment26, 17–36.

Dai F, Wang X L, Zhang X Q, Chen Z H, Nevo E, Jin G L, Wu D Z, Li C D, Zhang G P. 2018. Assembly and analysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley. Plant Biotechnology Journal16, 760–770.

Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U, Grover A, Ismond K P, Good A G, Peacock W J. 2000. Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany51, 89–97.

Dickin E, Wright D. 2008. The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.). European Journal of Agronomy28, 234–244.

Ding F G, Tong J Y, Xu R, Chen J, Xu X T, Nadeem M, Wang S P, Zhang Y X, Zhu Z W, Wang F J, Fang Z W, Hao Y F. 2023. Identification of stable quantitative trait loci underlying waterlogging tolerance post-anthesis in common wheat (Triticum aestivum). The Crop Journal11, 1163–1170.

Donat M G, Lowry A L, Alexander L V, O’Gorman P A, Maher N. 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change6, 508–513.

Dordas C. 2009. Nonsymbiotic hemoglobins and stress tolerance in plants. Plant Science176, 433–440.

Dordas C, Hasinoff B B, Igamberdiev A U, Manac’h N, Rivoal J, Hill R D. 2003. Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant Journal35, 763–770.

Du H W, Shen X M, Huang Y Q, Huang M, Zhang Z X. 2016. Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. BMC Plant Biology16, 1–11.

Ejiri M, Fukao T, Miyashita T, Shiono K. 2021. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Breeding Science71, 40–50.

Evans D E, Gladish D K. 2017. Plant responses to waterlogging. Encyclopedia of Applied Plant Sciences1, 36–39.

Eysholdt-Derzso E, Sauter M. 2017. Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiology175, 412–423.

Farooq A, Bukhari S A, Akram N A, Ashraf M, Wijaya L, Alyemeni M N. 2020. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants9, 104.

Fukao T, Bailey-Serres J. 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences of the United States of America105, 16814–16819.

Fukao T, Xu K N, Ronald P C, Bailey-Serres J. 2006. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell18, 2021–2034.

Gao J W, Su Y, Yu M, Huang Y Q, Shen A. 2021. Potassium alleviates post-anthesis photosynthetic reductions in winter wheat caused by waterlogging at the stem elongation stage. Frontiers in Plant Science11, 607475.

Gasch P, Fundinger M, Müller J T, Lee T, Bailey-Serres J, Mustroph A. 2015. Redundant ERF-VII transcription factors bind an evolutionarily-conserved cis-motif to regulate hypoxia-responsive gene expression in ArabidopsisPlant Cell28, 160–180.

Ghosal S, Quilloy F A, Casal C, Septiningsih E M, Mendioro M S, Dixit S. 2020. Trait-based mapping to identify the genetic factors underlying anaerobic germination of rice: Phenotyping, GXE, and QTL mapping. BMC Genetics21, 6.

Gibbs D J, Conde J V, Berckhan S, Mendiondo G M, Prasad G, Holdsworth M J. 2015. Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiology169, 23–31.

Gibbs D J, Lee S C, Isa N M, Gramuglia S, Fukao T, Bassel G W, Correia C S, Corbineau F, Theodoulou F L, Bailey-Serres J, Holdsworth M J. 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature479, 415–418.

Gill M B, Zeng F R, Shabala L, Zhang G P, Yu M, Demidchik V, Shabala S, Zhou M X. 2019. Identification of QTL related to ROS formation under hypoxia and their association with waterlogging and salt tolerance in barley. International Journal of Molecular Sciences20, 699.

Gomathi R, Rao P N G, Chandran K, Selvi A. 2015. Adaptive responses of sugarcane to waterlogging stress: An overview. Sugar Technology17, 325–338.

Grzesiak M T, Janowiak F, Szczyrek P, Kaczanowska K, Ostrowska A, Rut G, Hura T, Rzepka A, Grzesiak S. 2016. Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids. Acta Physiologiae Plantarum38, 109.

Guo Y Y, Chen J, Kuang L H, Wang N H, Zhang G P, Jiang L X, Wu D Z. 2020. Effect of waterlogging stress on early seedling development and transcriptomic responses in Brassica napusMolecular Breeding40, 85.

Habibi F, Liu T, Shahid M A, Schaffer B, Sarkhosh A. 2023. Physiological, biochemical, and molecular responses of fruit trees to root zone hypoxia. Environmental and Experimental Botany206, 105179.

Haddadi B S, Hassanpour H, Niknam V. 2016. Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquatica L. Acta Physiologiae Plantarum38, 1–11.

Haque E, Abe F, Mori M, Nanjo Y, Komatsu S, Oyanagi A, Kawaguchi K. 2014. Quantitative proteomics of the root of transgenic wheat expressing TaBWPR-1.2 genes in response to waterlogging. Proteomes2, 485–500.

Hattori Y, Miura K, Asano K, Yamamoto E, Mori H, Kitano H, Matsuoka M, Ashikari M. 2007. A major QTL confers rapid internode elongation in response to water rise in deepwater rice. Breeding Science57, 305–314.

Hattori Y, Nagai K, Mori H, Kitano H, Matsuoka M, Ashikari M. 2008. Mapping of three QTLs that regulate internode elongation in deepwater rice. Breeding Science58, 39–46.

Herzog M, Striker G G, Colmer T D, Pedersen O. 2016. Mechanisms of waterlogging tolerance in wheat - A review of root and shoot physiology. Plant Cell and Environment39, 1068–1086.

Hess N, Klode M, Anders M, Sauter M. 2011. The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiologia Plantarum143, 41–49.

Hill R D. 2012. Non-symbiotic haemoglobins - What’s happening beyond nitric oxide scavenging? Aob Plants2012, pls004.

Hsu F, Chou M Y, Chou S J, Li Y R, Peng H P, Shih M C. 2013. Submergence confers immunity mediated by the WRKY22 transcription factor in ArabidopsisPlant Cell25, 2699–2713.

Hwang J H, Lee M O, Lee D H. 2011. Expression profile analysis of hypoxia responses in Arabidopsis roots and shoots. Journal of Plant Biology54, 373–383.

Isayenkov S V. 2019. Genetic sources for the development of salt tolerance in crops. Plant Growth Regulation89, 1–17.

Jain V, Singla N, Jain S, Gupta K. 2010. Activities of enzymes of fermentation pathways in the leaves and roots of contrasting cultivars of sorghum (Sorghum bicolor L.) during flooding. Physiology and Molecular Biology of Plants16, 241–247.

Jiménez J D, Cardoso J A, Leiva L F, Gil J, Forero M G, Worthington M L, Miles J W, Rao I M. 2017. Non-destructive phenotyping to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Frontiers in Plant Science8, 167.

Jiménez J D, Clode P L, Signorelli S, Veneklaas E J, Colmer T D, Kotula L. 2021. The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicolaJournal of Experimental Botany72, 3279–3293.

Jung K H, Seo Y S, Walia H, Cao P, Fukao T, Canlas P E, Amonpant F, Bailey-Serres J, Ronald P C. 2010. The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiology152, 1674–1692.

Kaur G, Zurweller B, Motavalli P P, Nelson K A. 2019. Screening corn hybrids for soil waterlogging tolerance at an early growth stage. Agriculture9, 33.

Khabaz-Saberi H, Rengel Z. 2010. Aluminum, manganese, and iron tolerance improves performance of wheat genotypes in waterlogged acidic soils. Journal of Plant Nutrition and Soil Science173, 461–468.

Kim Y H, Hwang S J, Waqas M, Khan A L, Lee J H, Lee J D, Nguyen H T, Lee I J. 2015. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Frontiers in Plant Science6, 714.

Komatsu S, Shirasaka N, Sakata K. 2013. ‘Omics’ techniques for identifying flooding-response mechanisms in soybean. Journal of Proteome Research93, 169–178.

Kretzschmar T, Pelayo M A F, Trijatmiko K R, Gabunada L F M, Alam R, Jimenez R, Mendioro M S, Slametloedin I H, Sreenivasulu N, Baileyserres J. 2015. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature Plants1, 15124.

Kreuzwieser J, Rennenberg H. 2014. Molecular and physiological responses of trees to waterlogging stress. Plant Cell and Environment37, 2245–2259.

Kuai J, Chen Y L, Wang Y H, Meng Y L, Chen B L, Zhao W Q, Zhou Z G. 2016. Effect of waterlogging on carbohydrate metabolism and the quality of fiber in cotton (Gossypium hirsutum L.). Frontiers in Plant Science7, 877.

Kuai J, Li X Y, Li Z, Xie Y, Zhou G S. 2020. Leaf carbohydrates assimilation and metabolism affect seed yield of rapeseed with different waterlogging tolerance under the interactive effects of nitrogen and waterlogging. Journal of Agronomy and Crop Science206, 823–836.

Kumutha D, Sairam R K, Ezhilmathi K, Chinnusamy V, Meena R C. 2008. Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Science175, 706–716.

Kuroha T, Nagai K, Gamuyao R, Wang D R, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S. 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science361, 181–185.

Lee K W, Chen P W, Lu C A, Chen S, Ho T H D, Yu S M. 2009. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Science Signaling2, ra61.

Lekshmy S, Jha S K, Sairam R K. 2015. Elucidation of Abiotic Stress Signaling in Plants, Functional Genomics Perspectives. Springer, New York. pp. 227–242.

Li H B, Vaillancourt R, Mendham N, Zhou M X. 2008. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics9, 401.

Liao W B, Huang G B, Yu J H, Zhang M L. 2012. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiology and Biochemistry58, 6–15.

Liao W B, Huang G B, Yu J H, Zhang M L, Shi X L. 2015. Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. Journal of Horticultural Science and Biotechnology86, 159–165.

Licausi F, Kosmacz M, Weits D A, Giuntoli B, Giorgi F M, Voesenek L A C J, Perata P, Dongen J T V. 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature479, 419–422.

Liu Z J, Kumari S, Zhang L F, Zheng Y L, Ware D. 2012. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea maysPLoS ONE7, e39786.

Lobos G A, Camargo A V, del Pozo A, Araus J L, Ortiz R, Doonan J H. 2017. Editorial: Plant phenotyping and phenomics for plant breeding. Frontiers in Plant Science8, 2181.

Lu S W, Friesen T L, Faris J D. 2011. Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.). Molecular Genetics and Genomics285, 485–503.

Luan H Y, Chen C Y, Yang J, Qiao H L, Li H T, Li S F, Zheng J Y, Shen H Q, Xu X, Wang J. 2022. Genome-wide association scan and transcriptome analysis reveal candidate genes for waterlogging tolerance in cultivated barley. Frontiers in Plant Science13, 1048939.

Luan H Y, Guo B J, Pan Y H, Lv C, Shen H Q, Xu R G. 2018a. Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. Plant Growth Regulation85, 399–409.

Luan H Y, Guo B J, Shen H Q, Pan Y H, Hong Y, Lv C, Xu R G. 2020. Overexpression of barley transcription factor HvERF2.11 in Arabidopsis enhances plant waterlogging tolerance. International Journal of Molecular Sciences21, 1982.

Luan H Y, Li H T, Li Y, Chen C Y, Li S F, Wang Y, Yang J, Xu M, Shen H Q, Qiao H L, Wang J. 2023. Transcriptome analysis of barley (Hordeum vulgare L.) under waterlogging stress, and overexpression of the HvADH4 gene confers waterlogging tolerance in transgenic ArabidopsisBMC Plant Biology23, 62.

Luan H Y, Shen H Q, Pan Y H, Guo B J, Lv C, Xu R G. 2018b. Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: A proteomics approach. Scientific Reports8, 9655.

Ma S Y, Gai P P, Wang Y Y, Ullah N, Zhang W J, Fan Y H, Shan Y J, Huang Z L, Hu X. 2021. Carbohydrate assimilation and translocation regulate grain yield formation in wheat crops (Triticum aestivum L.) under post-flowering waterlogging. Agronomy11, 2209.

Manik S M N, Quamruzzaman M, Zhao C C, Johnson P, Hunt I, Shabala S, Zhou M X. 2022. Genome-wide association study reveals marker trait associations (MTA) for waterlogging-triggered adventitious roots and aerenchyma formation in barley. International Journal of Molecular Sciences23, 3341.

Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B. 2005a. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. Huehuetenangensis) seedlings. Euphytica142, 33–42.

Mano Y, Omori F. 2013. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. Mays). Annals of Botany112, 1125–1139.

Mano Y, Omori F, Muraki M, Takamizo T. 2005b. QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlings. Breeding Science55, 343–347.

Mano Y, Omori F, Takamizo T, Kindiger B, Bird R M, Loaisiga C H, Takahashi H. 2007. QTL mapping of root aerenchyma formation in seedlings of a maize×rare teosinte “Zea nicaraguensis” cross. Plant and Soil295, 103–113.

Mano Y, Takeda K. 2012. Accurate evaluation and verification of varietal ranking for flooding tolerance at the seedling stage in barley (Hordeum vulgare L.). Breeding Science62, 3–10.

Matsukura C, Kawai M, Toyofuku K, Barrero R A, Yamaguchi J. 2000. Transverse vein differentiation associated with gas space formation-fate of the middle cell layer in leaf sheath development of rice. Annals of Botany85, 19–27.

McDonald M P, Galwey N W, Colmer T D. 2001. Waterlogging tolerance in the tribe Triticeae: The adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell and Environment24, 585–596.

Mendiondo G M, Gibbs D J, Szurman-Zubrzycka M, Korn A, Marquez J, Szarejko I, Maluszynski M, King J, Axcell B, Smart K. 2016. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6Plant Biotechnology Journal14, 40–50.

Miller G, Shulaev V, Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Physiology Plantarum133, 481–489.

Minji P, Huikyeong Y, Hyeokgon P, Jun L, Soohwan K, Yongsic H. 2010. Interference with oxidative phosphorylation enhances anoxic expression of rice α-amylase genes through abolishing sugar regulation. Journal of Experimental Botany61, 3235–3244.

Mui N T, Zhou M X, Parsons D, Smith R W. 2021. Aerenchyma formation in adventitious roots of tall fescue and cocksfoot under waterlogged conditions. Agronomy11, 2487.

Mustroph A, Barding G A, Kaiser K A, Larive C K, Bailey-Serres J. 2015. Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C- and N-metabolism. Plant Cell and Environment37, 2366–2380.

Nanjo Y, Maruyama K, Yasue H, Yamaguchi-Shinozaki K, Shinozaki K, Komatsu S. 2011. Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Plant Molecular Biology77, 129–144.

Panozzo A, Dal Cortivo C, Ferrari M, Vicelli B, Varotto S, Vamerali T. 2019. Morphological changes and expressions of AOX1ACYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Frontiers in Plant Science10, 62.

Papdi C, Perez-Salamo I, Joseph M P, Giuntoli B, Bogre L, Koncz C, Szabados L. 2015. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12RAP2.2 and RAP2.3Plant Journal82, 772–784.

Paradiso A, Caretto S, Leone A, Bove A, Nisi R, De Gara L. 2016. ROS production and scavenging under anoxia and re-oxygenation in Arabidopsis cells: A balance between redox signaling and impairment. Frontiers in Plant Science7, 1803.

Parolin P. 2001. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia128, 326–335.

Pedersen O, Sauter M, Colmer T D, Nakazono M. 2020. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist229, 42–49.

Phukan U J, Mishra S, Shukla R K. 2016. Waterlogging and submergence stress: Affects and acclimation. Critical Reviews in Biotechnology36, 956–966.

Ploschuk R A, Miralles D J, Colmer T D, Ploschuk E L, Striker G G. 2018. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Frontiers in Plant Science9, 1863.

Ploschuk R A, Miralles D J, Colmer T D, Striker G G. 2020. Waterlogging differentially affects yield and its components in wheat, barley, rapeseed and field pea depending on the timing of occurrence. Journal of Agronomy and Crop Science206, 363–375.

Pucciariello C, Perata P. 2017. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant Cell and Environment40, 473–482.

Qi X H, Li Q Q, Shen J T, Qian C L, Xu X W, Xu Q, Chen X H. 2020. Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant Cell and Environment43, 1545–1557.

Qiu F Z, Zheng Y L, Zhang Z L, Xu S Z. 2007. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Annals of Botany99, 1067–1081.

Ren B Z, Zhang J W, Dong S T, Liu P, Zhao B, Li H. 2017. Nitrapyrin improves grain yield and nitrogen use efficiency of summer maize waterlogged in the field. Agronomy Journal109, 185–192.

Ren B Z, Zhang J W, Li X, Fan X, Dong S T, Liu P, Zhao B. 2014. Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of Plant Science94, 23–31.

Rudy D, Mark W, Rebecka C, Yo M, Kathleen I, Allen G. 2008. Functional analysis of lactate dehydrogenase during hypoxic stress in ArabidopsisFunctional Plant Biology35, 131–140.

Rzewuski G, Sauter M. 2008. Ethylene biosynthesis and signaling in rice. Plant Science175, 32–42.

Sairam R K, Dharmar K, Chinnusamy V, Lekshmy S, Joshi R, Bhattacharya P. 2012. The role of non-symbiotic haemoglobin and nitric oxide homeostasis in waterlogging tolerance in Vigna species. Biologia Plantarum56, 528–536.

Sánchez C, Cabrera J J, Gates A J, Bedmar E J, Richardson D J, Delgado M J. 2011. Nitric oxide detoxification in the rhizobia-legume symbiosis. Biochemical Society Transactions39, 184–188.

Schmidt R, Weits D A, Feulner C F, Van J D. 2018. Oxygen sensing and integrative stress signaling in plants. Plant Physiology176, 1131–1142.

Septiningsih E M, Hidayatun N, Sanchez D L, Nugraha Y, Carandang J, Pamplona A M, Collard B C Y, Ismail A M, Mackill D J. 2015. Accelerating the development of new submergence tolerant rice varieties: The case of Ciherang-Sub1 and PSB Rc18-Sub. Euphytica202, 259–268.

Septiningsih E M, Sanchez D L, Singh N, Sendon P M D, Pamplona A M, Heuer S, Mackill D J. 2012. Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theoretical and Applied Genetics124, 867–874.

Setter T L, Waters I. 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant and Soil253, 1–34.

Setter T L, Waters I, Sharma S K, Singh K N, Kulshreshtha N, Yaduvanshi N P, Ram P C, Singh B N, Rane J, McDonald G, Khabaz-Saberi H, Biddulph T B, Wilson R, Barclay I, McLean R, Cakir M. 2009. Review of wheat improvement for waterlogging tolerance in Australia and India: The importance of anaerobiosis and element toxicities associated with different soils. Annals of Botany103, 221–235.

Shiono K, Ejiri M, Shimizu K, Yamada S. 2019. Improved waterlogging tolerance of barley (Hordeum vulgare) by pretreatment with ethephon. Plant Production Science22, 285–295.

Shiono K, Takahashi H, Colmer T D, Nakazono M. 2008. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Science175, 52–58.

Shiono K, Yoshikawa M, Kreszies T, Yamada S, Hojo Y, Matsuura T, Mori I C, Schreiber L, Yoshioka T. 2022. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa). New Phytologist233, 655–669.

Soltani A, MafiMoghaddam S, Oladzad-Abbasabadi A, Walter K, Kearns P J, Vasquez-Guzman J, Mamidi S, Lee R, Shade A L, Jacobs J L, Chilivers M I, Lowry D B, McClean P, Osorno J M. 2018. Genetic analysis of flooding tolerance in an Andean diversity panel of dry bean (Phaseolus vulgaris L.). Frontiers in Plant Science9, 767.

Sundgren T K, Uhlen A K, Waalen W, Lillemo M. 2018. Field screening of waterlogging tolerance in spring wheat and spring barley. Agronomy8, 38.

Tamang B G, Magliozzi J O, Maroof M A, Fukao T. 2014. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell and Environment37, 2350–2365.

Tang H, Bi H, Liu B, Lou S L, Song Y, Tong S F, Chen N N, Jiang Y Z, Liu J Q, Liu H H. 2021. WRKY33 interacts with WRKY12 protein to up-regulate RAP2.2 during submergence induced hypoxia response in Arabidopsis thalianaNew Phytologist229, 106–125.

Thiel J, Rolletschek H, Friedel S, Lunn J E, Nguyen T H, Feil R, Tschiersch H, Muller M, Borisjuk L. 2011. Seed-specific elevation of non-symbiotic hemoglobin AtHb1: Beneficial effects and underlying molecular networks in Arabidopsis thalianaBMC Plant Biology11, 48.

Tong C, Hill C B, Zhou G F, Zhang X Q, Jia Y, Li C D. 2021. Opportunities for improving waterlogging tolerance in cereal crops - Physiological traits and genetic mechanisms. Plants10, 1560.

Unger I M, Kennedy A C, Muzika R M. 2009. Flooding effects on soil microbial communities. Applied Soil Ecology42, 1–8.

Valliyodan B, Ye H, Song L, Murphy M, Shannon J G, Nguyen H T. 2017. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. Journal of Experimental Botany68, 1835–1849.

Vidoz M L, Loreti E, Mensuali A, Alpi A, Perata P. 2010. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant Journal63, 551–562.

Voesenek L A C J, Bailey-Serres J. 2013. Flooding tolerance: O2 sensing and survival strategies. Current Opinion in Plant Biology16, 647–653.

Voesenek L A C J, Bailey-Serres J. 2015. Flood adaptive traits and processes: An overview. New Phytologist206, 57–73.

Vwioko E, Adinkwu O, El-Esawi M A. 2017. Comparative physiological, biochemical, and genetic responses to prolonged waterlogging stress in okra and maize given exogenous ethylene priming. Frontiers in Physiology8, 632.

Wang Y, Jie K, Chen B, Zhou Z, Meng Y, Zhao W, Liu Z. 2014. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Plant Science223, 79–98.

Watanabe K, Takahashi H, Sato S, Nishiuchi S, Omori F, Malik A, Colmer T D, Mano Y, Nakazono M. 2017. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome. Plant Cell and Environment40, 304–316.

Wei X N, Xu H J, Rong W, Ye X G, Zhang Z Y. 2019. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant Cell and Environment42, 1471–1485.

Weits D A, Giuntoli B, Kosmacz M, Parlanti S, Hubberten H M, Riegler H, Hoefgen R, Perata P, van Dongen J T, Licausi F. 2014. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nature Communications5, 3425.

White M D, Klecker M, Hopkinson R J, Weits D A, Mueller C, Naumann C, O’Neill R, Wickens J, Yang J, Brooks-Bartlett J C. 2017. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nature Communications8, 14690.

Wiraguna E, Malik A, Erskine W. 2017. Waterlogging tolerance in lentil (Lens culinaris Medik. subsp culinaris) germplasm associated with geographic origin. Genetic Resources and Crop Evolution64, 579–586.

Wurms K V, Reglinski T, Buissink P, Chee A A, Fehlmann C, McDonald S, Cooney J, Jensen D, Hedderley D, McKenzie C, Rikkerink E H A. 2023. Effects of drought and flooding on phytohormones and abscisic acid gene expression in kiwifruit. International Journal of Molecular Sciences24, 7580.

Xie R J, Zheng L, Jiao Y, Huang X. 2021. Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq. Environmental and Experimental Botany192, 104647.

Xu C M, Chen L P, Chen S, Chu G, Wang D Y, Zhang X F. 2020. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice. Annals of Applied Biology177, 61–73.

Xu K N, Mackill D J. 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Molecular Breeding2, 219–224.

Xu K N, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, Mackill D J. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature442, 705–708.

Xu L, Pan R, Shabala L, Shabala S, Zhang W Y. 2019. Temperature influences waterlogging stress-induced damage in Arabidopsis through the regulation of photosynthesis and hypoxia-related genes. Plant Growth Regulation89, 143–152.

Xu L, Zhao C C, Pang J Y, Niu Y A, Liu H Q, Zhang W Y, Zhou M X. 2022. Genome-wide association study reveals quantitative trait loci for waterlogging-triggered adventitious roots and aerenchyma formation in common wheat. Frontiers in Plant Science13, 1066752.

Xu X W, Chen M Y, Ji J, Xu Q, Qi X H, Chen X H. 2017b. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation. BMC Plant Biology17, 129.

Xu X W, Ji J, Ma X T, Xu Q, Qi X H, Chen X H. 2016. Comparative proteomic analysis provides insight into the key proteins involved in cucumber (Cucumis sativus L.) adventitious root emergence under waterlogging stress. Frontiers in Plant Science7, 1515–1528.

Xu X W, Ji J, Xu Q, Qi X H, Chen X H. 2017a. Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions. Molecular Genetics and Genomics292, 353.

Xu X W, Wang H H, Qi X H, Xu Q, Chen X H. 2014. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Scientia Horticulturae179, 388–395.

Yaduvanshi N, Setter T, Sharma S, Singh K, Kulshreshtha N. 2014. Influence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and Australia. Soil Research50, 489–499.

Yamane K, Mariyama M, Hirooka Y, Iijima M. 2023. Root pruning is effective in alleviating the inhibition of soybean growth caused by anaerobic stress for a short period. Journal of Integrative Agriculture22, 1035–1044.

Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. 2014. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Journal of Experimental Botany65, 261–273.

Yan K, Zhao S J, Cui M X, Han G X, Wen P. 2018. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Plant Physiology and Biochemistry125, 239–246.

Yang F F, Liu T, Wang Q Y, Du M Z, Yang T L, Liu D Z, Li S J, Liu S P. 2021. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters. Journal of Integrative Agriculture20, 2613–2626.

Ye H, Song L, Chen H T, Valliyodan B, Cheng P, Ali L, Vuong T, Wu C J, Orlowski J, Buckley B, Chen P Y, Shannon J G, Nguyen H T. 2018. A major natural genetic variation associated with root system architecture and plasticity improves waterlogging tolerance and yield in soybean. Plant Cell and Environment41, 2169–2182.

Yin D M, Chen S M, Chen F D, Guan Z Y, Fang W M. 2010. Morpho-anatomical and physiological responses of two Dendranthema species to waterlogging. Environmental and Experimental Botany68, 122–130.

Yordanova R Y, Christov K N, Popova L P. 2004. Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany51, 93–101.

Yu F, Liang K, Fang T, Zhao H L, Han X S, Cai M J, Qiu F Z. 2019. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnology Journal17, 2286–2298.

Yu M, Chen G Y. 2013. Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. Springerplus2, 245.

Yu M, Mao S L, Chen G Y, Liu Y X, Li W, Wei Y M, Liu C J, Zheng Y L. 2014. QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. Journal of Integrative Agriculture13, 31–39.

Zaidi P H, Rashid Z, Vinayan M T, Almeida G D, Phagna R K, Babu R. 2015. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L.) germplasm. PLoS ONE10, e0124350.

Zeng F R, Shabala L, Zhou M X, Zhang G P, Shabala S. 2013. Barley responses to combined waterlogging and salinity stress: Separating effects of oxygen deprivation and elemental toxicity. Frontiers in Plant Science4, 313

Zhang G P, Tanakamaru K, Abe J, Morita S. 2007. Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiologiae Plantarum29, 171–176.

Zhang J Y, Huang S N, Wang G, Xuan J P, Guo Z R. 2016. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thalianaPlant Physiology and Biochemistry106, 244–252.

Zhang P, Lv D G, Jia L T, He J L, Qin S J. 2017. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics18, 649.

Zhang X C, Fan Y, Shabala S, Koutoulis A, Shabala L, Johnson P, Hu H L, Zhou M X. 2017. A new major - Effect QTL for waterlogging tolerance in wild barley (Hspontaneum). Theoretical and Applied Genetics130, 1559–1568.

Zhang X C, Zhou G F, Shabala S, Koutoulis A, Shabala L, Johnson P, Li C D, Zhou M X. 2016. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance. Theoretical and Applied Genetics129, 1167–1177.

Zhang X Q, Wu K L, Xue D F. 2009. Effects of waterlogging stress on antioxidative enzyme system in different barley genotypes. Journal of Zhejiang University (Science B), 35, 315–320.

Zhang Y J, Song X Z, Yang G Z, Li Z H, Lu H Q, Kong X Q, Eneji A E, Dong H Z. 2015. Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crops Research179, 164–172.

Zhao N, Li C W, Yan Y J, Cao W, Song A P, Wang H B, Chen S M, Jiang J F, Chen F D. 2018. Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions. International Journal of Molecular Sciences19, 1455–1475.

Zhao T, Pan X J, Ou Z G, Li Q, Zhang W E. 2022. Comprehensive evaluation of waterlogging tolerance of eleven Canna cultivars at flowering stage. Scientia Horticulturae296, 110890.

Zhou M X, Johnson P, Zhou G F, Li C D, Lance R. 2012. Quantitative trait loci for waterlogging tolerance in a barley cross of Franklin×YuYaoXiangTian Erleng and the relationship between waterlogging and salinity tolerance. Crop Science52, 2082–2088.

Zhou M X, Li H B, Mendham N J. 2007. Combining ability of waterlogging tolerance in barley. Crop Science47, 278–284.

Zhou W, Zhao D, Lin X. 1997. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). Journal of Plant Growth Regulation16, 47–53.

Zhou W G, Chen F, Meng Y J, Chandrasekaran U, Luo X F, Yang W Y, Shu K. 2020. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry148, 228–236.

Zou X L, Hu C W, Zeng L, Cheng Y, Xu M Y, Zhang X K. 2014. A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS ONE9, e89731.

[1] Yang Cao, Peihua Du, Yuwei Shang, Jiahao Ji, Leiqing Tan, Xue Zhang, Jizhong Xu, Bowen Liang. Melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2270-2291.
[2] ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun.

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1045-1057.

[3] Koji YAMANE, Miki MARIYAMA, Yoshihiro HIROOKA, Morio IIJIMA. Root pruning is effective in alleviating the inhibition of soybean growth caused by anaerobic stress for a short period[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1035-1044.
[4] MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3458-3473.
[5] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[6] WANG Pei-pei, WANG Zhao-ke, GUAN Le, Muhammad Salman HAIDER, Maazullah NASIM, YUAN Yong-bing, LIU Geng-sen, LENG Xiang-peng. Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine[J]. >Journal of Integrative Agriculture, 2022, 21(1): 91-112.
[7] DING Xiao-yu, XU Jin-song, HUANG He, QIAO Xing, SHEN Ming-zhen, CHENG Yong, ZHANG Xue-kun. Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.)[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1974-1983.
[8] REN Bai-zhao, HU Juan, ZHANG Ji-wang, DONG Shu-ting, LIU Peng, ZHAO Bin. Effects of urea mixed with nitrapyrin on leaf photosynthetic and senescence characteristics of summer maize (Zea mays L.) waterlogged in the field[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1586-1595.
[9] ZOU Xi-ling, ZENG Liu, LU Guang-yuan, CHENG Yong, XU Jin-song, ZHANG Xue-kun. Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L.[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1723-1734.
[10] XIAO Fei, LI Yuan-zheng, DU Yun, LING Feng, YAN Yi, FENG Qi , BAN Xuan. Monitoring Perennial Sub-Surface Waterlogged Croplands Based on MODIS in Jianghan Plain, Middle Reaches of the Yangtze River[J]. >Journal of Integrative Agriculture, 2014, 13(8): 1791-1801.
[11] YU Ma, MAO Shuang-lin, CHEN Guo-yue, LIU Ya-xi, LI Wei, WEI Yu-ming, LIU Chun-ji , ZHENG You-liang. QTLs for Waterlogging Tolerance at Germination and Seedling Stages in Population of Recombinant Inbred Lines Derived from a Cross Between Synthetic and Cultivated Wheat Genotypes[J]. >Journal of Integrative Agriculture, 2014, 13(1): 31-39.
No Suggested Reading articles found!