Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4161-4171    DOI: 10.1016/j.jia.2023.08.004
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Dietary manganese supplementation inhibits abdominal fat deposition possibly by regulating gene expression and enzyme activity involved in lipid metabolism in the abdominal fat of broilers
Xiaoyan Cui1, Ke Yang1, 2, 3, Weiyun Zhang1, Liyang Zhang4, Ding Li1, Wei Wu1, Yun Hu1, Tingting Li1, Xugang Luo1#

1 Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

2 Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China

3 Hebei Provincial Key Laboratory of Characteristic Animal Germplasm Resources Mining and Innovation, Qinhuangdao 066004, China

4 Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

腹脂沉积过多严重制约了肉鸡的生产效率。研究发现,添加锰可有效降低肉鸡腹脂沉积,但其潜在机制尚不清楚。本试验旨在研究粮添加无机或有机锰对公母鸡腹脂沉积、脂肪代谢相关酶活基因表达的影响。试验选取1日龄AA公鸡和AA母鸡各210采用2(性别)× 3(饲粮锰处理)双因子完全随机试验设计,共6个试验处理组,每个处理10个重复,每个重复7只鸡公鸡和母鸡饲喂含有17.52 mg/kg锰(1-21天)和15.62 mg/kg锰(22-42天)的不添加锰的基础饲粮,或添加110 mg/kg锰(1-21天)和80 mg/kg锰(22-42天)硫酸或中等螯合强度蛋白试验周期42。结果显示饲粮锰添加与性别对所有指标无显著交互作用(P>0.05);锰的添加使肉鸡腹脂率降低(P<0.003);与对照组相比,锰添加增加了(P<0.004)肉鸡腹脂中的脂肪甘油三酯脂酶(ATGL活性,而中等螯合强度蛋白降低了肉鸡腹脂中(P>0.002脂肪酸合成酶FAS)活性;锰添加降低了(P<0.009)肉鸡腹脂二酰基甘油酰基转移酶2DGAT2mRNA的表达水平和过氧化物酶体增殖物激活受体γPPARγmRNA和蛋白的表达水平,但上调了肉鸡腹脂中(P0.05ATGLmRNA和蛋白表达水平。结果表明饲粮添加锰可能通过降低肉鸡腹脂PPARγDGAT2的表达以及增加肉鸡腹脂ATGL的表达和活性来抑制肉鸡腹脂沉积,而中等螯合强度蛋白FAS活性的抑制作用更为明显。



Abstract  
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.  Several studies found that dietary supplemental manganese (Mn) could effectively reduce the abdominal fat deposition of broilers, but the underlying mechanisms remain unclear.  The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition, and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.  A total of 420 1-d-old AA broilers (half males and half females) were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3 (dietary Mn addition)×2 (gender) factorial arrangement.  Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg–1 (d 1–21) and 15.62 mg Mn kg–1 (d 22–42) by analysis or the basal diets supplemented with 110 mg Mn kg–1 (d 1–21) and 80 mg Mn kg–1 (d 22–42) as either the Mn sulfate or the Mn proteinate with moderate chelation strength (Mn-Prot M) for 42 d.  The results showed that the interaction between dietary Mn addition and gender had no impact (P>0.05) on any of the measured parameters; abdominal fat percentage of broilers was decreased (P<0.003) by Mn addition; Mn addition increased (P<0.004) adipose triglyceride lipase (ATGL) activity, while Mn-Prot M decreased (P<0.002) the fatty acid synthase (FAS) activity in the abdominal fat of broilers compared to the control; Mn addition decreased (P<0.009) diacylglycerol acyltransferase 2 (DGAT2) mRNA expression level and peroxisome proliferator-activated receptor γ (PPARγ) mRNA and protein expression levels, but up-regulated (P<0.05) the ATGL mRNA and protein expression levels in the abdominal fat of broilers.  It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγ and DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers, and Mn-Prot M was more effective in inhibiting the FAS acitivity.
Keywords:  manganese        abdominal fat        broiler        gene expression        enzyme activity  
Received: 11 April 2023   Accepted: 28 June 2023
Fund: 

This work was financially supported by the National Natural Science Foundation of China (32102559), the Jiangsu Shuang Chuang Tuan Dui Program, China (JSSCTD202147), and the Jiangsu Shuang Chuang Ren Cai Program, China (JSSCRC2021541).

About author:  Xiaoyan Cui, E-mail: xycui@yzu.edu.cn; #Correspondence Xugang Luo, Tel: +86-514-87976732, E-mail: wlysz@263.net

Cite this article: 

Xiaoyan Cui, Ke Yang, Weiyun Zhang, Liyang Zhang, Ding Li, Wei Wu, Yun Hu, Tingting Li, Xugang Luo. 2024. Dietary manganese supplementation inhibits abdominal fat deposition possibly by regulating gene expression and enzyme activity involved in lipid metabolism in the abdominal fat of broilers. Journal of Integrative Agriculture, 23(12): 4161-4171.

Bai S, Cao S, Ma X, Li X, Liao X, Zhang L, Zhang M, Zhang R, Hou S, Luo X. 2021. Organic iron absorption and expression of related transporters in the small intestine of broilers. Poultry Science100, 101182.

Bai S P, Lu L, Wang R L, Xi L, Zhang L Y, Luo X G. 2012. Manganese source affects manganese transport and gene expression of divalent metal transporter 1 in the small intestine of broilers. British Journal of Nutrition108, 267–276.

Cui X, Cui H, Liu L, Zhao G, Liu R, Li Q, Zheng M, Wen J. 2018. Decreased testosterone levels after caponization leads to abdominal fat deposition in chickens. BMC Genomics19, 344.

Fouad A M, El-Senousey H K. 2014. Nutritional factors affecting abdominal fat deposition in poultry: A review. Asian-Australasian Journal of Animal Sciences27, 1057–1068.

Fu R Q, Liu R R, Zhao G P, Zheng M Q, Chen J L, Wen J. 2014. Expression profiles of key transcription factors involved in lipid metabolism in Beijing-You chickens. Gene537, 120–125.

Gong Z, Huang C, Sheng X, Zhang Y, Li Q, Wang M W, Peng L, Zang Y Q. 2009. The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism. Endocrinology150, 104–113.

Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S. 2006. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science312, 734–737.

Hocquette J F, Gondret F, Baéza E, Médale F, Jurie C, Pethick D W. 2010. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal4, 303–319.

Hu Y, Wang C L, Wu W, Qu Y C, Zhang W Y, Li D, Zhu L, Gao G Y, Wu B X, Zhang L Y, Cui X Y, Li T T, Geng Y Q, Luo X G. 2022. Organic zinc with moderate chelation strength enhances zinc absorption in the small intestine and expression of related transporters in the duodenum of broilers. Frontiers in Physiology9, 855405.

Ji F, Luo X G, Lu L, Liu B, Yu S X. 2006. Effect of manganese source on manganese absorption by the intestine of broilers. Poultry Science85, 1947–1952.

Li S F, Lin Y X, Lu L, Xi L, Wang Z Y, Hao S F, Zhang L Y, Li K, Luo X G. 2011. An estimation of the manganese requirement for broilers from 1 to 21 days of age. Biological Trace Element Research143, 939–948.

Li S F, Luo X G, Liu B, Crenshaw T D, Kuang X, Shao G, Yu S. 2004. Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. Journal of Animal Science82, 2352–2363.

Li S F, Luo X G, Lu L, Crenshaw T D, Bu Y Q, Liu B, Kuang X, Shao G Z, Yu S X. 2005. Bioavailability of organic manganese sources in broilers fed high dietary calcium. Animal Feed Science and Technology123, 703–715.

Li S F, Luo X G, Lu L, Liu B, Kuang X, Shao G Z, Yu S X. 2008. Effect of intravenously injected manganese on the gene expression of manganese-containing superoxide dismutase in broilers. Poultry Science 87, 2259–2265.

Li T J, Guo W, Zhou Z X. 2021. Adipose triglyceride lipase in hepatic physiology and pathophysiology. Biomolecules12, 57.

Li T T, Lu N, Shao Y X, Zhang L Y, Lu L, Liu Z P, Luo X G, Liao X D. 2022. Effect of the gene silencing of phosphorus transporters on phosphorus absorption in primary cultured duodenal epithelial cells of chick embryos. Journal of Integrative Agriculture7, 2076–2085.

Lu L, Chang B, Liao X D, Wang R L, Zhang L Y, Luo X G. 2016. Use of molecular biomarkers to estimate manganese requirements for broiler chickens from 22 to 42 d of age. British Journal of Nutrition116, 1512–1518.

Lu L, Ji C, Luo X G, Liu B, Yu S X. 2006. The effect of supplemental manganese in broiler diets on abdominal fat deposition and meat quality. Animal Feed Science and Technology129, 49–59.

Lu L, Luo X G, Ji C, Liu B, Yu S X. 2007. Effect of manganese supplementation and source on carcass traits, meat quality, and lipid oxidation in broilers. Journal of Animal Science85, 812–822.

Lu L, Wang M L, Liao X D, Zhang L Y, Luo X G. 2017. Manganese influences the expression of fatty acid synthase and malic enzyme in cultured primary chicken hepatocytes. British Journal of Nutrition118, 881–888.

Man W C, Miyazaki M, Chu K, Ntambi J. 2006. Colocalization of SCD1 and DGAT2: Implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. Journal of Lipid Research47, 1928–1939.

Mersmann H J. 1998. Lipoprotein and hormone-sensitive lipases in porcine adipose tissue. Journal of Animal Science, 76, 13961404.

Moreira G M, Reecy J, Godoy T F, Trevisoli P A, Garrick D, Coutinho L L. 2018. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics19, 374.

Mu X P, Cui X Y, Liu R R, Li Q H, Zheng M Q, Zhao G P, Ge C R, Wen J, Hu Y D, Cui H X. 2019. Identification of differentially expressed genes and pathways for abdominal fat deposition in ovariectomized and sham-operated chickens. Genes10, 155.

Qiao F Q, Yao H, Li H Q, Wang J D. 2007. Effect of supplemental organic manganese or chromium on growth performance, carcass traits and dynamic lipid metabolism indexes in broilers. Journal of Beijing University of Agriculture22, 32–38. (in Chinese)

Saez G, Davail S, Gentes G, Hocquette J F, Jourdan T, Degrace P, Baeza E. 2009. Gene expression and protein content in relation to intramuscular fat content in Muscovy and Pekin ducks. Poultry Science 88, 2382–2391.

Sands J S, Smith M O. 1999. Broilers in heat stress conditions: Effects of dietary manganese proteinate or chromium picolinate supplementation. The Journal of Applied Poultry Research8, 280–287.

Sanz M, Lopez-Bote C J, Menoyo D, Bautista J M. 2000. Abdominal fat deposition and fatty acid synthesis are lower and beta-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. Journal of Nutrition130, 3034–3037.

Southern L L, Baker D H. 1983. Eimeria acervulina infection in chicks fed deficient or excess levels of manganese. Journal of Nutrition113, 172–177.

Stone S J, Myers M H, Watkins S M, Brown B E, Feingold K R, Elias P M, Farese R. 2004. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. Journal of Biological Chemistry279, 11767–11776.

Szanto A, Nagy L. 2005. Retinoids potentiate peroxisome proliferator-activated receptor gamma action in differentiation, gene expression, and lipid metabolic processes in developing myeloid cells. Molecular Pharmacology67, 1935–1943.

Thomas K W, Lowther D A. 1976. Manganese levels and the morphology of the epiphyseal plate in broilers with slipped tendons. Poultry Science55, 1962–1968.

Wallace M, Green C R, Roberts L S, Lee Y M, Mccarville J L, Sanchez-Gurmaches J, Meurs N, Gengatharan J M, Hover J D, Phillips S A. 2018. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nature Chemical Biology14, 1021–1031.

Wang M L, Chen Z J, Lu L, Zhang L Y, Luo X G. 2011. Effect of different manganese sources on activities and gene expression of key enzymes in fat metabolism of broilers. Scientia Agricultura Sinica44, 3850–3858. (in Chiense)

Xia W H, Tang L, Wang Z Y, Wang L. 2022. Effects of inorganic and organic manganese supplementation on growth performance, tibia development, and oxidative stress in broiler chickens. Biological Trace Element Research200, 4453–4464.

Yen C L, Stone S J, Koliwad S, Harris C, Farese R V. 2008. Thematic review series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. Journal of Lipid Research49, 2283–2301.

Yin Y, Zhang Y Q, Hillgartner F B. 2002. Sterol regulatory element-binding protein-1 interacts with the nuclear thyroid hormone receptor to enhance acetyl-CoA carboxylase-transcription in hepatocytes. Journal of Biological Chemistry, 277, 1955419565.

[1] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[2] YANG Ya-jun, XU Hong-xing, WU Zhi-hong, LU Zhong-xian. Effects of inhibitors on the protease profiles and degradation of activated Cry toxins in larval midgut juices of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2195-2203.
[3] ZHAO Yong-gan, WANG Shu-juan, LIU Jia, ZHUO Yu-qun, LI Yan, ZHANG Wen-chao. Fertility and biochemical activity in sodic soils 17 years after reclamation with flue gas desulfurization gypsum[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3312-3321.
[4] WENG Bo, RAN Mao-liang, Cao Rong, PENG Fu-zhi, LUO Hui, GAO Hu, TANG Xiang-wei, Yang An-qi, CHEN Bin.
miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene  
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1924-1935.
[5] Noor Muhammad, Gerald Zvobgo, ZHANG Guo-ping. A review: The beneficial effects and possible mechanisms of aluminum on plant growth in acidic soil[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1518-1528.
[6] SHAO Yuan-zhi, ZENG Jiao-ke, TANG Hong, ZHOU Yi, LI Wen. The chemical treatments combined with antagonistic yeast control anthracnose and maintain the quality of postharvest mango fruit[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1159-1169.
[7] CHEN Xu, HAN Xiao-zeng, YOU Meng-yang, YAN Jun, LU Xin-chun, William R. Horwath, ZOU Wen-xiu . Soil macroaggregates and organic-matter content regulate microbial communities and enzymatic activity in a Chinese Mollisol[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2605-2618.
[8] RONG Qin-lei, LI Ruo-nan, HUANG Shao-wen, TANG Ji-wei, ZHANG Yan-cai, WANG Li-ying. Soil microbial characteristics and yield response to partial substitution of chemical fertilizer with organic amendments in greenhouse vegetable production[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1432-1444.
[9] TONG Xiao-lei, WANG Zheng-yang, MA Bai-quan, ZHANG Chun-xia, ZHU Ling-cheng, MA Feng-wang, LI Ming-jun. Structure and expression analysis of the sucrose synthase gene family in apple[J]. >Journal of Integrative Agriculture, 2018, 17(04): 847-856.
[10] MIN Wei, GUO Hui-juan, ZHANG Wen, ZHOU Guang-wei, MA Li-juan, YE Jun, HOU Zhen-an. Irrigation water salinity and N fertilization: Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton fild[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1121-1131.
No Suggested Reading articles found!