Aoki T, O’Donnell K. 1999. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum. Mycologia, 91, 597.
Bentley A R, Summerell B A, Burgess L W. 2008. Sexual compatibility in Fusarium pseudograminearum (Gibberella coronicola). Mycological Research, 112, 1101–1106.
Catlett N L, Lee B N, Yoder O C, Turgeon B G. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Reports, 50, 9–11.
Clark-Cotton M R, Jacobs K C, Lew D J. 2022. Chemotropism and cell-cell fusion in fungi. Microbiology and Molecular Biology Reviews, 86, e0016521.
Contento A L, Xiong Y, Bassham D C. 2005. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant Journal, 42, 598–608.
Corral-Ramos C, Roca M G, Di Pietro A, Roncero M I G, Ruiz-Roldan C. 2015. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum. Autophagy, 11, 131–144.
Deng Y Y, Li W, Zhang P, Sun H Y, Zhang X X, Zhang A X, Chen H G. 2020. Fusarium pseudograminearum as an emerging pathogen of crown rot of wheat in eastern China. Plant Pathology, 69, 240–248.
Dettmann A, Heilig Y, Ludwig S, Schmitt K, Illgen J, Fleißner A, Valerius O, Seiler S. 2013. HAM-2 and HAM-3 are central for the assembly of the Neurospora STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the MAP kinase MAK-1 in a MAK-2-dependent manner. Molecular Microbiology, 90, 796–812.
EFSAPLH (European Food Safety Authority Panel on Plant Health), Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret J A, Justesen A F, MacLeod A, Magnusson C S, Milonas P, Navas-Cortes J A, Parnell S, Potting R, Stefani E, Thulke H H, Van der Werf W, Civera A V, Yuen J, Zappalà L, Migheli Q, et al. 2022. Pest categorisation of Fusarium pseudograminearum. EFSA Journal, 20, e07399.
Fleissner A, Herzog S. 2016. Signal exchange and integration during self-fusion in filamentous fungi. Seminars in Cell & Developmental Biology, 57, 76–83.
Fleissner A, Sarkar S, Jacobson D J, Roca M G, Read N D, Glass N L. 2005. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell, 4, 920–930.
Fleissner A, Simonin A R, Glass N L. 2008. Cell fusion in the filamentous fungus, Neurospora crassa. Methods in Molecular Biology, 475, 21–38.
Francisco C S, Zwyssig M M, Palma-Guerrero J. 2020. The role of vegetative cell fusions in the development and asexual reproduction of the wheat fungal pathogen Zymoseptoria tritici. BMC Biology, 18, 99.
Fu C, Iyer P, Herkal A, Abdullah J, Stout A, Free S J. 2011. Identification and characterization of genes required for cell-to-cell fusion in Neurospora crassa. Eukaryot Cell, 10, 1100–1109.
Furukawa K, Fukuda T, Yamashita S, Saigusa T, Kurihara Y, Yoshida Y, Kirisako H, Nakatogawa H, Kanki T. 2018. The PP2A-like protein phosphatase Ppg1 and the Far complex cooperatively counteract CK2-mediated phosphorylation of Atg32 to inhibit mitophagy. Cell Reports, 23, 3579–3590.
Furukawa K, Innokentev A, Kanki T. 2021. Mitophagy regulation mediated by the Far complex in yeast. Autophagy, 17, 1042–1043.
Gardiner D M, Benfield A H, Stiller J, Stephen S, Aitken K, Liu C J, Kazan K. 2018. A high-resolution genetic map of the cereal crown rot pathogen Fusarium pseudograminearum provides a near-complete genome assembly. Molecular Plant Pathology, 19, 217–226.
Glass N L, Jacobson D J, Shiu P K. 2000. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annual Review of Genetics, 34, 165–186.
Goudreault M, D’Ambrosio L M, Kean M J, Mullin M J, Larsen B G, Sanchez A, Chaudhry S, Chen G I, Sicheri F, Nesvizhskii A I, Aebersold R, Raught B, Gingras A C. 2009. A PP2A phosphatase high density interaction network identifies a novel Striatin-interacting phosphatase and kinase complex linked to the Cerebral Cavernous Malformation 3 (CCM3) Protein. Molecular & Cellular Proteomics, 8, 157–171.
Guo L, Wenner N, Kuldau G A. 2015. FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides. Fungal Biology, 119, 1158–1169.
Hassan Y I, Bullerman L B. 2009. Wheat bran as an alternative substrate for macroconidia formation by some Fusarium species. Journal of Microbiological Methods, 77, 134–136.
Hu Z H, Sankar D S, Vu B, Leytens A, Vionnet C, Wu W, Stumpe M, Martinez-Martinez E, Stork B, Dengjel J. 2021. ULK1 phosphorylation of striatin activates protein phosphatase 2A and autophagy. Cell Reports, 36, 109762.
Innokentev A, Furukawa K, Fukuda T, Saigusa T, Inoue K, Yamashita S I, Kanki T. 2020. Association and dissociation between the mitochondrial Far complex and Atg32 regulate mitophagy. eLife, 9, e63694.
Ishikawa F H, Souza E A, Read N D, Roca M G. 2010. Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum. Fungal Biology, 114, 2–9.
Kazan K, Gardiner D M. 2018. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: Recent progress and future prospects. Molecular Plant Pathology, 19, 1547–1562.
Kemp H A, Sprague G F. 2003. Far3 and five interacting proteins prevent premature recovery from pheromone arrest in the budding yeast Saccharomyces cerevisiae. Molecular and Cellular Biology, 23, 1750–1763.
Kuck U, Beier A M, Teichert I. 2016. The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genetics and Biology, 90, 31–38.
Kuck U, Radchenko D, Teichert I. 2019. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biological Chemistry, 400, 1005–1022.
Kuck U, Stein V. 2021. STRIPAK, a key regulator of fungal development, operates as a multifunctional signaling Hub. Journal of Fungi, 7, 443.
Li H L, Yuan H X, Fu B, Xing X P, Sun B J, Tang W H. 2012. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China. Plant Disease, 96, 1065.
Neisch A, Neufeld T, Hays T. 2016. A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation. Molecular Biology of the Cell, 27, 441–461.
Nordzieke D E, Fernandes T R, El Ghalid M, Turra D, Di Pietro A. 2019. NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. New Phytologist, 224, 1600–1612.
Obanor F, Neate S, Simpfendorfer S, Sabburg R, Wilson P, Chakraborty S. 2013. Fusarium graminearum and Fusarium pseudograminearum caused the 2010 head blight epidemics in Australia. Plant Pathology, 62, 79–91.
Pinan-Lucarre B, Clave C. 2008. Monitoring autophagy in the filamentous fungus Podospora anserina. Methods in Enzymology, 451, 251–270.
Pracheil T, Liu Z. 2013. Tiered assembly of the yeast Far3-7-8-9-10-11 complex at the endoplasmic reticulum. Journal of Biological Chemistry, 288, 16986–16997.
Read N D, Lichius A, Shoji J Y, Goryachev A B. 2009. Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12, 608–615.
Reschka E J, Nordzieke S, Valerius O, Braus G H, Poggeler S. 2018. A novel STRIPAK complex component mediates hyphal fusion and fruiting-body development in filamentous fungi. Molecular Microbiology, 110, 513–532.
Sankar D S, Hu Z H, Dengjel J. 2022. The complex interplay between ULK1 and protein phosphatases in autophagy regulation. Autophagy, 18, 455–456.
Schiestl R H, Gietz R D. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Current Genetics, 16, 339–346.
Seo G Y, Han H, Vargas R E, Yang B, Li X, Wang W Q. 2020. MAP4K interactome reveals STRN4 as a key STRIPAK complex component in Hippo pathway regulation. Cell Reports, 32, 107860.
Silar P. 2005. Peroxide accumulation and cell death in filamentous fungi induced by contact with a contestant. Mycological Research, 109, 137–149.
Simonin A R, Rasmussen C G, Yang M, Glass N L. 2010. Genes encoding a striatin-like protein (ham-3) and a forkhead associated protein (ham-4) are required for hyphal fusion in Neurospora crassa. Fungal Genetics and Biology, 47, 855–868.
Tunali B, Obanor F, Erginbas G, Westecott R A, Nicol J, Chakraborty S. 2012. Fitness of three Fusarium pathogens of wheat. FEMS Microbiology Ecology, 81, 596–609.
Vangalis V, Knop M, Typas M A, Papaioannou I A. 2021a. Establishment of conidial fusion in the asexual fungus Verticillium dahliae as a useful system for the study of non-sexual genetic interactions. Current Genetics, 67, 471–485.
Vangalis V, Likhotkin I, Knop M, Typas M A, Papaioannou I A. 2021b. Starvation-induced cell fusion and heterokaryosis frequently escape imperfect allorecognition systems in an asexual fungal pathogen. BMC Biology, 19, 169.
Vangalis V, Papaioannou I A, Markakis E A, Knop M, Typas M A. 2021c. The NADPH oxidase A of Verticillium dahliae is essential for pathogenicity, normal development, and stress tolerance, and it interacts with Yap1 to regulate redox homeostasis. Journal of Fungi (Basel), 7, 740.
Wang L M, Zhang Y F, Du Z L, Kang R J, Chen L L, Xing X P, Yuan H X, Ding S L, Li H L. 2017. FpPDE1 function of Fusarium pseudograminearum on pathogenesis in wheat. Journal of Integrative Agriculture, 16, 2504–2512.
Wang Y J, Liu X, Xu Y J, Gu Y Y, Zhang X Y, Zhang M X, Wen W, Lee Y W, Shi J R, Mohamed S R, Goda A A, Wu H J, Gao X W, Gu Q. 2022. The autophagy-related proteins FvAtg4 and FvAtg8 are involved in virulence and fumonisin biosynthesis in Fusarium verticillioides. Virulence, 13, 764–780.
Xiang Q, Rasmussen C, Glass N L. 2002. The ham-2 locus, encoding a putative transmembrane protein, is required for hyphal fusion in Neurospora crassa. Genetics, 160, 169–180.
Xing X P, Zhang P P, Ding S L, Yuan H X, Chen L L, Li H L. 2017. Optimizing of agrobacterium tumefaciens-mediated genetic transformation sytem in Fusarium pseudograminearum. Journal of Agricultural Biotechnology, 25, 1887–1894. (in Chinese)
Xu F, Song Y L, Yang G Q, Wang J M, Liu L L, Li Y H. 2015. First report of Fusarium pseudograminearum from wheat heads with Fusarium head blight in north China plain. Plant Disease, 99, 156.
Zhang J, Xia M C, Xue B G, Goodwin P H, Sun R H, Quan X, Lu W G, Yang L R. 2018. First report of Fusarium pseudograminearum causing root rot on soybean (Glycine max) in Henan, China. Plant Disease, 102, 1454.
Zheng H W, Miao P F, Lin X L, Li L P, Wu C X, Chen X M, Abubakar Y, Norvienyeku J, Li G, Zhou J, Wang Z H, Zheng W H. 2018. Small GTPase Rab7-mediated FgAtg9 trafficking is essential for autophagy- dependent development and pathogenicity in Fusarium graminearum. PLoS Genetics, 14, e1007546.
Zhou H F, He X L, Wang S, Ma Q Z, Sun B J, Ding S L, Chen L L, Zhang M, Li H L. 2019. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China. Environmental Microbiology, 21, 2740–2754.
Zhu X M, Li L, Cai Y Y, Wu X Y, Shi H B, Liang S, Qu Y M, Naqvi N I, Del Poeta M, Dong B, Lin F C, Liu X H. 2021. A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus. Autophagy, 17, 2939–2961.
|