Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3723-3736    DOI: 10.1016/j.jia.2024.09.001
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide identification, molecular evolution, and functional characterization of fructokinase gene family in apple reveal its role in improving salinity tolerance

Jing Su1*, Lingcheng Zhu2*, Pingxing Ao1, Jianhui Shao3, Chunhua Ma1#

1 College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.

2 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China

3 College of Plant protection, Yunnan Agricultural University, Kunming, 650201, Yunnan, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

果糖激酶(FRK)是植物体内果糖信号转导的调节因子,其通过磷酸化催化果糖代谢。课题组前期研究表明MdFRK2蛋白不仅对果糖具有高亲和力,而且对山梨醇具有较高催化活性。然而,苹果FRK基因家族的全基因组鉴定及其演化进程尚未报道。本研究通过系统的全基因组分析,共鉴定了9个苹果FRK基因成员,在系统发育上将其分为七个聚类。MdFRK基因的染色体定位和共线性分析揭示,它们在苹果基因组中的扩张主要受串联和染色体片段复制事件的驱动。在4个源库组织和5个不同苹果果实发育阶段观察到MdFRKs的差异表达,这表明它们在苹果果实发育和糖积累中可能起着至关重要的作用。RT-qPCR鉴定了对盐和干旱胁迫敏感的MdFRK候选基因,其中过表达MdFRK2转基因苹果植株显著增强了耐盐性。总之,本研究结果对于了解MdFRKs在调控苹果果实发育和耐盐应答中的功能具有重要的意义。



Abstract  
Fructokinase (FRK) is a regulator of fructose signaling in plants and gateway proteins that catalyze the initial step in fructose metabolism through phosphorylation.  Our previous study demonstrated that MdFRK2 protein exhibit not only high affinity for fructose, but also high enzymatic activity due to sorbitol.  However, genome-wide identification of the MdFRK gene family and their evolutionary dynamics in apple are yet to be reported.  A systematic genome-wide analysis in this study identified a total of nine MdFRK gene members, which could phylogenetically be clustered into seven groups.  Chromosomal location and synteny analysis of MdFRKs revealed that their expansion in the apple genome is primarily driven by tandem and segmental duplication events.  Divergent expression patterns of MdFRKs were observed in four source-sink tissues and at five different apple fruit developmental stages, which suggested their potential crucial roles in the apple fruit development and sugar accumulation.  Reverse transcription-quantitative PCR (RT-qPCR) identified candidate NaCl or drought stress responsive MdFRKs, and transgenic apple plants overexpressing MdFRK2 exhibited considerably enhanced salinity tolerance.  Our results will be useful for understanding the functions of MdFRKs in the regulation of apple fruit development and salt stress response.


Keywords:  apple        fructokinase        evolutionary patterns        MdFRK2        salinity tolerance  
Received: 11 August 2023   Accepted: 05 July 2024
Fund: 

This work was supported by the Yunnan Provincial Science and Technology Department Agriculture Joint Project, China (202301BD070001-020).



About author:  Jing Su, E-mail: 18119446137@163.com; Lingcheng Zhu, E-mail: zhulingcheng316@nwsuaf.edu.cn; #Correspondence Chunhua Ma, E-mail: 563139036@qq.com, 2007033@ynau.edu.cn *These authors contributed equally to this study. *These authors contributed equally to this study.

Cite this article: 

Jing Su, Lingcheng Zhu, Pingxing Ao, Jianhui Shao, Chunhua Ma. 2024. Genome-wide identification, molecular evolution, and functional characterization of fructokinase gene family in apple reveal its role in improving salinity tolerance. Journal of Integrative Agriculture, 23(11): 3723-3736.

Cha-Um S, Charoenpanich A, Roytrakul S, Kirdmanee C. 2009. Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiologiae Plantarum31, 477–486.

Chen Y H, Zhang Q, Hu W C, Zhang X T, Wang L M, Hua X T, Yu Q Y, Ming R, Zhang J S. 2017. Evolution and expression of the fructokinase gene family in SaccharumBMC Genomics18, 197.

Cheng L L, Zhou R, Reidel E J, Sharkey T D, Dandekar A M. 2005. Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO2 assimilation in apple leaves. Planta220, 767–776.

Daccord N, Celton J M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro E A, Gouzy J, Rees D J G, Guérif P, Muranty H, Durel C E, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics49, 1099–1106.

Davies H V, Shepherd L V, Burrell M M, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock R D, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie A R. 2005. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism. Plant and Cell Physiology46, 1103–1115.

Desnoues E, Génard M, Quilot-Turion B, Baldazzi V. 2018. A kinetic model of sugar metabolism in peach fruit reveals a functional hypothesis of a markedly low fructose-to-glucose ratio phenotype. The Plant Journal94, 685–698.

Ezoe A, Shirai K, Hanada K. 2021. Degree of functional divergence in duplicates is associated with distinct roles in plant evolution. Molecular Biology and Evolution38, 1447–1459.

Gonzali S, Pistelli L, De Bellis L, Alpi A. 2001. Characterization of two Arabidopsis thaliana fructokinases. Plant Science160, 1107–1114.

Han Y P, Zheng D M, Vimolmangkang S, Khan M A, Beever J E, Korban S S. 2011. Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. Journal of Experimental Botany62, 5117–5130.

Huo L Q, Guo Z J, Jia X, Sun X, Wang P, Gong X Q, Ma F W. 2020a. Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance. Plant Science294, 110444.

Huo L Q, Guo Z J, Wang P, Zhang Z J, Jia X, Sun Y M, Sun X, Gong X Q, Ma F W. 2020b. MdATG8i functions positively in apple salt tolerance by maintaining photosynthetic ability and increasing the accumulation of arginine and polyamines. Environmental and Experimental Botany172, 103989.

Horton P, Nakai K. 1997. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. In: Gaasterland T, Karp P D, Karplus K, Ouzounis C, Sander C, Valencia A, eds., Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology (ISMB). Association for the Advancement of Artificial Intelligence Press, University of Kentucky, Lexington, KY. pp. 147–152.

Karni L, Aloni B. 2002. Fructokinase and hexokinase from pollen grains of bell pepper (Capsicum annuum L.): possible role in pollen germination under conditions of high temperature and CO2 enrichment. Annals of Botany90, 607–612.

Kato-Noguchi H, Takaoka T, Izumori K. 2005. Psicose inhibits lettuce root growth via a hexokinase-independent pathway. Physiologia Plantarum125, 293–298.

Koch K E. 1996. Carbohydrate-modulated gene expression in plants. Annual Review of Plant Biology, 47, 509–540.

Li M J, Feng F J, Cheng L L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One7, e33055.

Li M J, Li P M, Ma F W, Dandekar A M, Cheng L L. 2018. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Horticulture Research5, 60.

Liu L, Gai Z J, Qiu X, Liu T H, Li S X, Ye F, Jian S L, Shen Y H, Li X N. 2023. Salt stress improves the low-temperature tolerance in sugar beet in which carbohydrate metabolism and signal transduction are involved. Environmental and Experimental Botany208, 105239.

Lugassi N, Stein O, Egbaria A, Belausov E, Zemach H, Arad T, Granot D, Carmi N. 2022. Sucrose synthase and fructokinase are required for proper meristematic and vascular development. Plants11, 1035.

Malko D B, Makeev V J, Mironov A A, Gelfand M S. 2006. Evolution of exon–intron structure and alternative splicing in fruit flies and malarial mosquito genomes. Genome Research16, 505–509.

Martinez-Barajas E, Luethy M H, Randall D D. 1997. Molecular cloning and analysis of fructokinase expression in tomato (Lycopersicon esculentum Mill.). Plant Science125, 13–20.

Park J, Gupta R S. 2008. Adenosine kinase and ribokinase - the RK family of proteins. Cellular and Molecular Life Sciences65, 2875–2896.

Pego J V, Smeekens S C. 2000. Plant fructokinases: a sweet family get-together. Trends in Plant Science5, 531–536.

Qiao X, Yin H, Li L T, Wang R Z, Wu J Y, Wu J, Zhang S L. 2018. Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in pear (Pyrus bretschneideri). Frontiers in Plant Science9, 161.

Qin Q P, Zhang S L, Chen J W, Xie Y F, Chen K S, Syed A. 2018. Isolation and expression analysis of fructokinase genes from citrus. Journal of Integrative Plant Biology46, 1408–1415.

Riggs J W , Cavales P C, Chapiro S M, Callis J. 2017. Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thalianaBMC Plant Biology17, 83.

Roach M, Gerber L, Sandquist D, Gorzsás A, Hedenström M, Kumar M, Steinhauser M C, Feil R, Daniel G, Stitt M, Sundberg B, Niittylä T. 2012. Fructokinase is required for carbon partitioning to cellulose in aspen wood. The Plant Journal70, 967–977.

Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology57, 675–709.

Ruan Y L. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology65, 33–67.

Singh A. 2022. Soil salinity: A global threat to sustainable development. Soil Use and Management38, 39–67.

Šircelj H, Tausz M, Grill D, Batič F. 2005. Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. Journal of Plant Physiology162, 1308–1318.

Stein O, Damari-Weissler H, Secchi F, Rachamilevitch S, German M A, Yeselson Y, Amir R, Schaffer A, Holbrook N M, Aloni R, Zwieniecki M A, Granot D. 2016. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development. New Phytologist209, 1484–1495.

Stein O, Granot D. 2018a. Plant fructokinases: evolutionary, developmental, and metabolic aspects in sink tissues. Frontiers in Plant Science9, 339.

Stein O, Secchi F, German M A, Damari-Weissler H, Aloni R, Holbrook N M, Zwieniecky M A, Granot D. 2018b. The tomato cytosolic fructokinase FRK1 is important for phloem fiber development. Biologia Plantarum62, 353–361.

Smeekens S. 2000. Sugar-induced signal transduction in plants. Annual Review of Plant Biology51, 49–81.

Su J, Cui W F, Zhu L C, Li B Y, Ma F W, Li M J. 2022. Response of carbohydrate metabolism-mediated sink strength to auxin in shoot tips of apple plants. Journal of Integrative Agriculture21, 422–433.

Su J, Jiao T T, Liu X, Zhu L C, Ma B Q, Ma F W, Li M J. 2023. Calcyclin-binding protein-promoted degradation of MdFRUCTOKINASE2 regulates sugar homeostasis in apple. Plant Physiology191, 1052–1065.

Su J, Zhang C X, Zhu L C, Yang N X, Yang J J, Ma B Q, Ma F W, Li M J. 2021. MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar. Biotechnology for Biofuels14, 137.

Sun T T, Pei T T, Yang L L, Zhang Z J, Li M J, Liu Y R, Ma F W, Liu C H. 2021. Exogenous application of xanthine and uric acid and nucleobase-ascorbate transporter MdNAT7 expression regulate salinity tolerance in apple. BMC Plant Biology21, 52.

Sun X, Wang P, Jia X, Huo L Q, Che R M, Ma F W. 2018. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnology Journal16, 545–557.

Taylor J S, Raes J. 2004. Duplication and divergence: the evolution of new genes and old ideas. Annual Review of Genetics38, 615–643.

Taylor M A, Ross H A, Gardner A, Davies H V. 1995. Characterisation of a cDNA encoding fructokinase from potato (Solanum tuberosum L.). Journal of Plant Physiology145, 253–256.

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, et al. 2010. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics42, 833–839.

Wang Y P, Wang X Y, Paterson A H. 2012. Genome and gene duplications and gene expression divergence: a view from plants. Annals of the New York Academy of Sciences1256, 1–14.

Xu W J, Zhao Y Y, Chen S S, Xie J B, Zhang D Q. 2020b. Evolution and functional divergence of the fructokinase gene family in Populus. Frontiers in Plant Science11, 484.

Xu Z C, Pu X D, Gao R R, Demurtas O C, Fleck S J, Richter M, He C N, Ji A J, Sun W, Kong J Q, Hu K Z, Ren F M, Song J J, Wang Z, Gao T, Xiong C, Yu H Y, Xin T Y, Albert V A, Giuliano G, et al. 2020a. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biology18, 63.

Yang J F, Chen M X, Zhang J H, Hao G F, Yang G F. 2020. Genome-wide phylogenetic and structural analysis reveals the molecular evolution of the ABA receptor gene family. Journal of Experimental Botany71, 1322–1336.

Yang J J, Zhang J, Li C, Zhang Z, Ma F W, Li M J. 2019. Response of sugar metabolism in apple leaves subjected to short-term drought stress. Plant Physiology and Biochemistry141, 164–171.

Yang J J, Zhu L C, Cui W F, Zhang C, Li D X, Ma B Q, Cheng L L, Ruan Y L, Ma F W, Li M J. 2018. Increased activity of MdFRK2, a high-affinity fructokinase, leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves. Horticulture Research5, 71.

Yao Y, Geng M T, Wu X H, Sun C, Wang Y L, Chen X, Shang L, Lu X H, Li Z, Li R M, Fu S P, Duan R J, Liu J, Hu X W, Guo J C. 2017. Identification, expression, and functional analysis of the fructokinase gene family in cassava. International Journal of Molecular Sciences18, 2398.

Zhao S, Gao H B, Jia X M, Wang H B, Mao K, Ma F W. 2020. The HD-Zip I transcription factor MdHB-7 regulates drought tolerance in transgenic apple (Malus domestica). Environmental and Experimental Botany180, 104246.

Zhu L C, Li B Y, Wu L M, Li H X, Wang Z Y, Wei X Y, Ma B Q, Zhang Y F, Ma F W, Ruan Y L, Li M J. 2021a. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proceedings of the National Academy of Sciences of the United States of America118, e2022788118.

Zhu L C, Li Y Z, Wang C C, Wang Z Q, Cao W J, Su J, Peng Y J, Li B Y, Ma B Q, Ma F W, Ruan Y L, Li M J. 2023. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. Nature Plants9, 951–964.

Zhu L C, Su J, Jin Y R, Zhao H Y, Tian X C, Zhang C, Ma F W, Li M J, Ma B Q. 2021. Genome-wide identification, molecular evolution, and expression divergence of the hexokinase gene family in apple. Journal of Integrative Agriculture20, 2112–2125.

Zörb C, Schmitt S, Mühling K H. 2010. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics10, 4441–4449.

[1] XU Xiao-zhao, CHE Qin-qin, CHENG Chen-xia, YUAN Yong-bing, WANG Yong-zhang. Genome-wide identification of WOX gene family in apple and a functional analysis of MdWOX4b during adventitious root formation[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1332-1345.
[2] CHEN Yan-hui, XIE Bin, AN Xiu-hong, MA Ren-peng, ZHAO De-ying, CHENG Cun-gang, LI En-mao, ZHOU Jiang-tao, KANG Guo-dong, ZHANG Yan-zhen. Overexpression of the apple expansin-like gene MdEXLB1 accelerates the softening of fruit texture in tomato[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3578-3588.
No Suggested Reading articles found!