Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4107-4119    DOI: 10.1016/j.jia.2023.11.039
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
A novel chorismate mutase effector secreted from root-knot nematode Meloidogyne enterolobii manipulates plant immunity to promote parasitism
Tuizi Feng1, 2*, Yuan Chen1, 2*, Zhourong Li1, Ji Pei1, Deliang Peng3, Huan Peng3#, Haibo Long1, 2#

1 Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

2 Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

3 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

根结线虫(Meloidogyne spp.)是一种在全球范围内广泛分布的、具有重要经济意义的植物寄生线虫。为了成功寄生并对抗寄主免疫系统,植物寄生线虫会分泌效应蛋白以促进侵染。本研究中,我们从象耳豆根结线虫(M. enterolobii)中鉴定了一种分支酸变位酶效应蛋白,命名为Me-CM。原位杂交实验结果表明Me-cm基因在食道腺中特异表达,且在根结线虫寄生阶段转录水平上调表达。体内以及体外RNA沉默实验结果证明,Me-CM影响了象耳豆根结线虫的致病性,降低了寄主感染率、根结数量、卵囊数、每个卵囊内的卵粒数和繁殖系数。亚细胞定位结果表明Me-CM蛋白定位在植物细胞的细胞质和细胞核中。通过检测拟南芥野生型和Me-cm过表达株系寄主免疫相关基因的转录水平,发现Me-cm基因过表达干扰了相关基因正常转录,尤其是降低了水杨酸合成途径标记基因PR1的转录水平。进一步检测拟南芥过表达株系的水杨酸含量表明,Me-cm基因的过表达可显著降低寄主水杨酸浓度,进而影响寄主免疫防御反应。本研究表明,象耳豆根结线虫可能通过分泌分支酸变位酶效应蛋白Me-CM干扰寄主水杨酸信号通路,影响寄主免疫反应,最终促进根结线虫的寄生。综上所述,本研究揭示了象耳豆根结线虫分泌的分支酸变位酶效应蛋白Me-CM调控寄主对象耳豆根结线虫感病性的作用机制,可作为利用RNAi技术开发抗性品种的潜在分子靶标。



Abstract  
Meloidogyne spp. is an economically important plant-parasitic nematode distributed worldwide.  To fight with host immune system for successful parasitism, plant parasitic nematodes secrete effectors to promote infection.  In this study, we identified one chorismate mutase (CM) effector from Menterolobii, named Me-CM.  Spatial and temporal expression assays exhibited Me-cm is expressed in esophageal glands and up-regulated at parasitic-stage juveniles.  Me-CM affects the pathogenicity of Menterolobii based on the reduced infection rate, number of galls, egg masses, eggs per mass and multiplication rate collected from RNA silencing experiments.  We showed that Me-CM localized in the cytoplasm and nucleus of plant cells and decreased the expression level of the marker gene PR1 of salicylic acid (SA) pathway.  Besides, constitutive expression of Me-cm in Arabidopsis thaliana significantly reduced salicylic acid concentration.  These results suggested that Menterolobii may secrete effector Me-CM to fight with plant immune systems via regulating SA signaling pathway when interacting with host plants, ultimately facilitating parasitism.
Keywords:  Meloidogyne enterolobii        effector       chorismate mutase       salicylic acid       plant immunity  
Received: 29 April 2023   Accepted: 07 October 2023
Fund: 
This work was supported by the Hainan Provincial Natural Science Foundation of China (323MS102 and 320QN307) and Central Public-Interest Scientific Institution Basal Research Fund, China (1630042022008). 
About author:  Tuizi Feng, E-mail: fengtuizi@catas.cn; Yuan Chen, E-mail: chenyuan@catas.cn; #Correspondence Haibo Long, Tel: +86-898-66969231, E-mail: longhb@catas.cn; Huan Peng, E-mail: penghuan@caas.cn * These authors contributed equally to this study.

Cite this article: 

Tuizi Feng, Yuan Chen, Zhourong Li, Ji Pei, Deliang Peng, Huan Peng, Haibo Long. 2024. A novel chorismate mutase effector secreted from root-knot nematode Meloidogyne enterolobii manipulates plant immunity to promote parasitism. Journal of Integrative Agriculture, 23(12): 4107-4119.

Abad P, Favery B, Rosso M N, Castagnone-Sereno P. 2003. Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Molecular Plant Pathology4, 217–224.

Balcke G U, Handrick V, Bergau N, Fichtner M, Henning A, Stellmach H, Tissier A, Hause B, Frolov A. 2012. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods8, 47.

Bartlem D G, Jones M G, Hammes U Z. 2014. Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. Journal of Experimental Botany65, 1789–1798.

Bauters L, Kyndt T, De Meyer T, Morreel K, Boerjan W, Lefevere H, Gheysen G. 2020. Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice. Molecular Plant Pathology21, 1634–1646.

Bentham A R, De la Concepcion J C, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes R K, Banfield M J. 2020. A molecular roadmap to the plant immune system. Journal of Biological Chemistry295, 14916–14935.

Brito J A, Desaeger J , Dickson D W. 2020. Reproduction of Meloidogyne enterolobii on selected root-knot nematode resistant sweetpotato (Ipomoea batatas) cultivars. Journal of Nematology52, 1–6.

de Boer J M, Yan Y, Smant G, Davis E L, Baum T J. 1998. In-situ hybridization to messenger RNA in Heterodera glycinesJournal of Nematology30, 309–312.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaThe Plant Journal16, 735–743.

Collett R L, Marais M, Daneel M, Rashidifard M , Fourie H. 2021. Meloidogyne enterolobii, a threat to crop production with particular reference to sub-Saharan Africa: An extensive, critical and updated review. Nematology23, 247–285.

Davis E L, Hussey R S, Baum T J, Bakker J, Schots A, Rosso M N, Abad P. 2000. Nematode parasitism genes. Annual Review of Phytopathology38, 365–396.

Dempsey D M, Vlot A C, Wildermuth M C, Klessig D F. 2011. Salicylic acid biosynthesis and metabolism. The Arabidopsis Book (American Society of Plant Biologists), 9, e0156.

Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie A R, Feussner I, Feussner K. 2011. Metabolic priming by a secreted fungal effector. Nature478, 395–398.

Doyle E A, Lambert K N. 2003. Meloidogyne javanica chorismate mutase 1 alters plant cell development. Molecular Plant-Microbe Interactions16, 123–131.

Elling A A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology103, 1092–1102.

EPPO (European and Mediterranean Plant Protection Organization). 2023. EPPO global database. [2023-07-19]. https://gd.eppo.int/taxon/MELGMY/distribution

Favery B, Quentin M, Jaubert-Possamai S, Abad P. 2016. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. Journal of Insect Physiology84, 60–69.

Haegeman A, Mantelin S, Jones J T, Gheysen G. 2012. Functional roles of effectors of plant-parasitic nematodes. Gene492, 19–31.

Hallgren J, Tsirigos K D, Pedersen M D, Almagro Armenteros J J, Marcatili P, Nielsen H, Krogh A, Winther O. 2022. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv10, doi: 10.1101/2022.04.08.487609.

He Q, Liu Y, Liang P, Liao X, Li X, Li X, Shi D, Liu W, Lin C, Zheng F, Miao W. 2021. A novel chorismate mutase from Erysiphe quercicola performs dual functions of synthesizing amino acids and inhibiting plant salicylic acid synthesis. Microbiological Research242, 126599.

Huang G, Dong R, Allen R E, Davis E L, Baum T J, Hussey R S. 2005. Two chorismate mutase genes from the root-knot nematode Meloidogyne incognitaMolecular Plant Pathology6, 23–30.

Huang G, Gao B, Maier T, Allen R, Davis E L, Baum T J, Hussey R S. 2003. A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognitaMolecular Plant-Microbe Interactions16, 376–381.

Jagdale S, Rao U, Giri A P. 2021. Effectors of root-knot nematodes: An arsenal for successful parasitism. Frontiers in Plant Science12, 800030.

Jan R, Khan M A, Asaf S, Lubna, Lee I J, Kim K M. 2021. Over-expression of chorismate mutase enhances the accumulation of salicylic acid, lignin, and antioxidants in response to the white-backed planthopper in rice plants. Antioxidants10, 1680.

Jaouannet M, Magliano M, Arguel M J, Gourgues M, Evangelisti E, Abad P, Rosso M N. 2013. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Molecular Plant-Microbe Interactions26, 97–105.

Jaouannet M, Perfus-Barbeoch L, Deleury E, Magliano M, Engler G, Vieira P, Danchin E G, Rocha M D, Coquillard P, Abad P, Rosso M N. 2012. A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei. New Phytologist194, 924–931.

Jones J D, Dangl J L. 2006. The plant immune system. Nature444, 323–329.

Jones J T, Furlanetto C, Bakker E, Banks B, Blok V, Chen Q, Phillips M, Prior A. 2003. Characterization of a chorismate mutase from the potato cyst nematode Globodera pallidaMolecular Plant Pathology4, 43–50.

Jones J T, Haegeman A, Danchin E G, Gaur H S, Helder J, Jones M G, Kikuchi T, ManzanillaLópez R, Palomares-Rius J E, Wesemael W M, Perry R N. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology14, 946–961.

Kiewnick S, Dessimoz M, Franck L. 2009. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. Journal of Nematology41, 134–139.

Kroll K, Holland C K, Starks C M, Jez J M. 2017. Evolution of allosteric regulation in chorismate mutases from early plants. Biochemical Journal474, 3705–3717.

Kud J, Wang W, Gross R, Fan Y, Huang L, Yuan Y, Gray A, Duarte A, Kuhl J C, Caplan A, Goverse A. 2019. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathogens15, e1007720.

Kumar D. 2014. Salicylic acid signaling in disease resistance. Plant Science228, 127–134.

Künstler A, Bacsó R, Gullner G, Hafez Y M, Király L. 2016. Staying alive-is cell death dispensable for plant disease resistance during the hypersensitive response? Physiological and Molecular Plant Pathology93, 75–84.

Lambert K N, Allen K D, Sussex I M. 1999. Cloning and characterization of an esophageal-gland-specific chorismate mutase from the phytoparasitic nematode Meloidogyne javanicaMolecular Plant-Microbe Interactions12, 328–336.

Lambert K N, Bekal S, Domier L L, Niblack T L, Noel G R, Smyth C A. 2005. Selection of Heterodera glycines chorismate mutase-1 alleles on nematode-resistant soybean. Molecular Plant-Microbe Interactions18, 593–601.

Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, Zhang M. 2014. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nature Communications5, 4686.

Long H, Wang X, Xu J. 2006. Molecular cloning and life-stage expression pattern of a new chorismate mutase gene from the root-knot nematode Meloidogyne arenariaPlant Pathology55, 559–563.

Maeda H, Dudareva N. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology63, 73–105.

Mitchum M G, Hussey R S, Baum T J, Wang X, Elling A A, Wubben M, Davis E L. 2013. Nematode effector proteins: An emerging paradigm of parasitism. New Phytologist199, 879–894.

Nguyen C N, Perfus-Barbeoch L, Quentin M, Zhao J, Magliano M, Marteu N, Da Rocha M, Nottet N, Abad P, Favery B. 2018. A root-knot nematode small glycine and cysteine-rich secreted effector, MiSGCR1, is involved in plant parasitism. New Phytologist217, 687–699.

Niu J, Liu P, Liu Q, Chen C, Guo Q, Yin J, Yang G, Jian H. 2016. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Scientific Reports6, 19443.

Peng Y, Yang J, Li X, Zhang Y. 2021. Salicylic acid: Biosynthesis and signaling. Annual Review of Plant Biology72, 761–791.

Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research29, e45.

Philbrick A N, Adhikari T B, Louws F J, Gorny A M. 2020. Meloidogyne enterolobii, a major threat to tomato production: Current status and future prospects for its management. Frontiers in Plant Science11, 606395.

Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R. 2015. Fungal effectors and plant susceptibility. Annual Review of Plant Biology66, 513–545.

Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer E L L, Eddy S R, Bateman A, Finn R D. 2012. The Pfam protein families database. Nucleic Acids Research40, D290–D301.

Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, Feussner I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science365, 498–502.

Rosso M N, Dubrana M P, Cimbolini N, Jaubert S, Abad P. 2005. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Molecular Plant-Microbe Interactions18, 615–620.

Rutter W B, Skantar A M, Handoo Z A, Mueller J D, Aultman S P, Agudelo P. 2019. Meloidogyne enterolobii found infecting root-knot nematode resistant sweetpotato in South Carolina, United States. Plant Disease103, 775.

Sacco M A, Koropacka K, Grenier E, Jaubert M J, Blanchard A, Goverse A, Smant G, Moffett P. 2009. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2-and RanGAP2-dependent plant cell death. PLoS Pathogens5, e1000564.

Santos D, Abrantes I, Maleita C. 2019. The quarantine root-knot nematode Meloidogyne enterolobii - a potential threat to Portugal and Europe. Plant Pathology68, 1607–1615.

Urwin P E, Lilley C J, Atkinson H J. 2002. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions15, 747–752.

Vanholme B., Kast P, Haegeman A, Jacob J, Grunewald W I, Gheysen G. 2009. Structural and functional investigation of a secreted chorismate mutase from the plant-parasitic nematode Heterodera schachtii in the context of related enzymes from diverse origins. Molecular Plant Pathology10, 189–200.

Vieira P, Gleason C. 2019. Plant-parasitic nematode effectors - insights into their diversity and new tools for their identification. Current Opinion in Plant Biology50, 37–43.

Weaver L M, Herrmann K M. 1997. Dynamics of the shikimate pathway in plants. Trends in Plant Science2, 346–351.

Wu J, Zhu W T, Zhao Q. 2023. Salicylic acid biosynthesis is not from phenylalanine in ArabidopsisJournal of Integrative Plant Biology65, 881–887.

Yang B, Eisenback J D. 1983. Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology15, 381.

Yuan M, Ngou B P, Ding P, Xin X F. 2021. PTI-ETI crosstalk: An integrative view of plant immunity. Current Opinion in Plant Biology62, 102030.

Zhao J, Li L, Liu Q, Liu P, Li S, Yang D, Chen Y, Pagnotta S, Favery B, Abad P, Jian H. 2019. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. Journal of Experimental Botany70, 5943–5958.

Zhuo K, Chen J, Lin B, Wang J, Sun F, Hu L, Liao J. 2017. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Molecular Plant Pathology18, 45–54.

Zipfel C. 2014. Plant pattern-recognition receptors. Trends in Immunology35, 345–351.

[1] Wajjiha Batool, Justice Norvienyeku, Wei Yi, Zonghua Wang, Shihong Zhang, Lili Lin. Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2686-2702.
[2] Yue Xu, Shurui Song, Huiying Wang, Xilong Cao, Xinran Zhao, Wenli Wang, Liyue Huo, Yawei Li, Misganaw Wassie, Bin Lu, Liang Chen, Haiyan Shi.

Genome-wide identification of the CONSTANS-LIKE (COL) family and mechanism of fruit senescence regulation by PpCOL8 in sand pear (Pyrus pyrifolia) [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1222-1237.

[3] Sihua Yang, Junyi Li, Shuai Yang, Shiqiao Tang, Huizhong Wang, Chunling Xu, Hui Xie.

A chorismate mutase from Radopholus similis plays an essential role in pathogenicity [J]. >Journal of Integrative Agriculture, 2024, 23(3): 923-937.

[4] Zhenchao Fu, Huiqian Zhuang, Vincent Ninkuu, Jianpei Yan, Guangyue Li, Xiufen Yang, Hongmei Zeng. A novel secreted protein FgHrip1 from Fusarium graminearum triggers immune responses in plants[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3774-3787.
[5] ZHANG Hao-yang, YANG Yan-fang, GUO Feng, SHEN Xiao-rui, LU Shan, CHEN Bao-sha. SsRSS1 mediates salicylic acid tolerance and contributes to virulence in sugarcane smut fungus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2126-2137.
[6] ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism[J]. >Journal of Integrative Agriculture, 2023, 22(3): 799-811.
[7] Wannaporn THEPBANDIT, Narendra Kumar PAPATHOTI, Jayasimha Rayulu DADDAM, Nguyen Huy HOANG, Toan LE THANH, Chanon SAENGCHAN, Kumrai BUENSANTEAI. In vitro and in silico studies of salicylic acid on systemic induced resistance against bacterial leaf blight disease and enhancement of crop yield[J]. >Journal of Integrative Agriculture, 2023, 22(1): 170-184.
[8] YIN Jun-jie, XIONG Jun, XU Li-ting, CHEN Xue-wei, LI Wei-tao. Recent advances in plant immunity with cell death: A review[J]. >Journal of Integrative Agriculture, 2022, 21(3): 610-620.
[9] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[10] WANG Jian-xia, LONG Feng, ZHU Hang, ZHANG Yan, WU Jian-ying, SHEN Shen, DONG Jin-gao, HAO Zhi-min. Bioinformatic analysis and functional characterization of CFEM proteins in Setosphaeria turcica[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2438-2449.
[11] TIAN Ji-hui, RAO Shuang, GAO Yang, LU Yang, CAI Kun-zheng. Wheat straw biochar amendment suppresses tomato bacterial wilt caused by Ralstonia solanacearum: Potential effects of rhizosphere organic acids and amino acids[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2450-2462.
[12] TIAN Zhong-ling, SHI Hong-li, Munawar Maria, ZHENG Jing-wu. Pectate lyase is a factor in the adaptability for Heterodera glycines infecting tobacco[J]. >Journal of Integrative Agriculture, 2019, 18(3): 618-626.
[13] ZHU Kun-peng, BAO Jian-dong, ZHANG Lian-hu, YANG Xue, LI Yuan, Zhu Ming-hui, LIN Qing-yun, ZHAO Ao, ZHAO Zhen, ZHOU Bo, LU Guo-dong. Comparative analysis of the genome of the field isolate V86010 of the rice blast fungus Magnaporthe oryzae from Philippines[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2222-2230.
[14] HAN Cong, ZUO Jin-hua, WANG Qing, DONG Hai-zhou, GAO Li-pu. Salicylic acid alleviates postharvest chilling injury of sponge gourd (Luffa cylindrica)[J]. >Journal of Integrative Agriculture, 2017, 16(03): 735-741.
[15] Hafeez ur Rehman, Hassan Iqbal, Shahzad M A Basra, Irfan Afzal, Muhammad Farooq, Abdul Wakeel, WANG Ning. Seed priming improves early seedling vigor, growth and productivity of spring maize[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1745-1754.
No Suggested Reading articles found!