Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (9): 2492-2507    DOI: 10.1016/j.jia.2022.07.007
Special Issue: 玉米遗传育种合辑Maize Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Genetic dissection of ear-related traits using immortalized F2 population in maize

GAO Ri-xin1,2, HU Ming-jian1,2, ZHAO Hai-ming1,2, LAI Jin-sheng1,2, SONG Wei-bin1, 2

1 State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R.China

2 Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究构建了一个由265个组合所构成的永久F2(IF2)群体,将IF2群体以及相应的RIL亲本分别于2017年和2018年种植于北京上庄和河南开封两个地点,我们对穗行数(RN)、行粒数(KNPR)、穗长(EL)、穗粗(ED)、十粒厚(TKT)、单穗重(EW)、穗粗(CD)、粒长(KL)、粒宽(KW)、穗粒重(GW)、百粒重(HKW)、籽粒产量(GY)等12个果穗相关性状进行调查,然后用R/qtl软件对该12个性状作单环境QTL分析,结果表明,在四个种植环境下共鉴定到165个QTL,单个QTL可以解释0.1%-12.66%的表型变异。其中,19个QTL于多环境下被鉴定到,我们称之为“稳定QTL”。此外,经过对显性度的分析,发现约44.85%的QTL表现出超显性效应,约12.72%的QTL表现出显性效应。最后,我们鉴定了35个基因组多效性区间,这些区间分别包含两个及以上QTL。同时,通过对RN、EL、ED和EW四个性状的杂种优势数据集进行分析,我们鉴定出17个的杂种优势相关QTL位点。本研究得到的结果为理解玉米果穗相关性状的遗传机制提供了新的见解,并拓展了我们对玉米杂种优势遗传基础的理解




Abstract  

Ear-related traits are often selection targets for maize improvement.  This study used an immortalized F2 (IF2) population to elucidate the genetic basis of ear-related traits.  Twelve ear-related traits (namely, row number (RN), kernel number per row (KNPR), ear length (EL), ear diameter (ED), ten-kernel thickness (TKT), ear weight (EW), cob diameter (CD), kernel length (KL), kernel width (KW), grain weight per ear (GW), 100-kernel weight (HKW), and grain yield per plot (GY)), were collected from the IF2 population.  The ear-related traits were comprised of 265 crosses derived from 516 individuals of the recombinant inbred lines (RILs) under two separated environments in 2017 and 2018, respectively.  Quantitative trait loci (QTLs) analyses identified 165 ear traits related QTLs, which explained phenotypic variation ranging from 0.1 to 12.66%.  Among the 165 QTLs, 19 underlying nine ear-related traits (CD, ED, GY, RN, TKT, HKW, KL, GW, and KNPR) were identified across multiple environments and recognized as reliable QTLs.  Furthermore, 44.85% of the total QTLs showed an overdominance effect, and 12.72% showed a dominance effect. Additionally, we found 35 genomic regions exhibiting pleiotropic effects across the whole maize genome, and 17 heterotic loci (HLs) for RN, EL, ED and EW were identified.  The results provide insights into genetic components of ear-related traits and enhance the understanding of the genetic basis of heterosis in maize. 

Keywords:  maize (Zea mays L.)        QTL mapping        genotyping by sequencing        immortalized F2 population        ear-related traits  
Received: 27 December 2020   Accepted: 02 April 2021
Fund: This work was supported by the National Key R&D Program of China (2016YFD0100802 and 2016YFD0101803) and the National Natural Science Foundation of China (31421005 and 91935303). 
About author:  Correspondence SONG Wei-bin, Tel: +86-10-62734641, E-mail: songwb@cau.edu.cn

Cite this article: 

GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin. 2022.

Genetic dissection of ear-related traits using immortalized F2 population in maize . Journal of Integrative Agriculture, 21(9): 2492-2507.

Alvarez P S, Lopez C G, Senior M L, Borras L. 2014. The genetic architecture of maize (Zea mays L.) kernel weight determination. G3 Genes/Genomes/Genetics, 4, 1611–1621.
Bao J S. 2014. Genes and QTLs for rice grain quality improvement. In: Yan W G, Bao J S, eds., Rice - Germplasm, Genetics and Improvement. IntechOpen, London, United Kingdom. pp. 239–278.
Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. 2006. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. The Plant Cell, 18, 574–585.
Broman K W, Hao W, Saunak S, Churchill G A. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19, 889–890.
Brown T A, Jones M K, Powell W, Allaby R G. 2009. The complex origins of domesticated crops in the Fertile Crescent. Trends in Ecology & Evolution, 24, 103–109.
Calderon C I, Yandell B S, Doebley J F. 2016. Fine mapping of a QTL associated with kernel row number on chromosome 1 of maize. PLoS ONE, 11, e0150276.
Chen L, Li Y X, Li C H, Wu X, Qin W W, Li X, Jiao F C, Zhang X J, Zhang D F, Shi Y S, Song Y C, Li Y, Wang T Y. 2016. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biology, 16, 81.
Chen J, Zeng B, Zhang M, Xie S J, Wang G K, Hauck A, Lai J S. 2014. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiology, 166, 252–264.
Chen Z J, Yang C, Tang D G, Zhang L, Zhang L, Qu J T, Liu J. 2017. Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. Journal of Integrative Agriculture, 16, 1432–1442.
Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. 2014. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 15, 433.
Ding X Y, Xu J S, Huang H, Qiao X, Shen M Z, Cheng Y, Zhang X K. 2020. Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.). Journal of Integrative Agriculture, 19, 1974–1983.
Edwards M D, Stuber C W, Wendel J F. 1987. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 116, 113–125.
Erenstein O, Blümmel M, Grings E. 2013. Potential for dual-purpose maize varieties to meet changing maize demands: Synthesis. Field Crops Research, 153, 107–112.
Fan M X, Zhang C Y, Shi L, Liu C, Ma W J, Chen M M, Liu K C, Cai F C, Wang G H, Wei Z Y, Jiang M, Liu Z C, Javeed A, Lin F. 2018. ZmSTK1 and ZmSTK2, encoding receptor-like cytoplasmic kinase, are involved in maize pollen development with additive effect. Plant Biotechnology Journal, 16, 1402–1414.
Frascaroli E, Cane M A, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pe M E. 2007. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics, 176, 625–644.
Gardiner J M, Coe E H, Melia-Hancock S, Hoisington D A, Chao S. 1993. Development of a core RFLP map in maize using an immortalized F2 population. Genetics, 134, 917–930.
Gomez E, Royo J, Muniz L M, Sellam O, Paul W, Gerentes D, Barrero C, Lopez M, Perez P, Hueros G. 2009. The maize transcription factor Myb-related Protein-1 is a key regulator of the differentiation of transfer cells. The Plant Cell, 21, 2022–2035.
Graham G I, Wolff D W, Stuber C W. 1997. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Science, 37, 1601–1610.
Guo J J, Chen Z L, Liu Z P, Wang B B, Song W B, Li W, Chen J, Dai J R, Lai J S. 2011. Identification of genetic factors affecting plant density response through QTL mapping of yield component traits in maize (Zea mays L.). Euphytica, 182, 409–422.
Guo M, Rupe M A, Dieter J A, Zou J, Spielbauer D, Duncan K E, Howard R J, Hou Z L, Simmons C R. 2010. Cell number regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. The Plant Cell, 22, 1057–1073.
Guo T T, Yang N, Tong H, Pan Q C, Yang X H, Tang J H, Wang J K, Li J S, Yan J B. 2014. Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theoretical and Applied Genetics, 127, 2149–2158.
Gupta P K, Rustgi S, Kumar N. 2006. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 49, 565–571.
Hao D R, Xue L, Zhang Z L, Cheng Y J, Chen G Q, Zhou G F, Li P C, Yang Z P, Xu C W. 2019. Combined linkage and association mapping reveal candidate loci for kernel size and weight in maize. Breed Science, 69, 420–428.
He J B, Gai J Y. 2020. QTL-allele matrix detected from RTM-GWAS is a powerful tool for studies in genetics, evolution, and breeding by design of crops. Journal of Integrative Agriculture, 19, 1407–1410.
Holding D R, Otegui M S, Li B, Meeley R B, Dam T, Hunter B G, Jung R, Larkins B A. 2007. The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. The Plant Cell, 19, 2569–2582.
Hong Y T, Chen L F, Du L P, Su Z Q, Wang J F, Ye X G, Qi L, Zhang Z Y. 2014. Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Functional & Integrative Genomics, 14, 341.
Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 162, 1885–1895.
Huang R Y, Jiang L R, Zheng J S, Wang T S, Wang H C, Huang Y M, Hong Z L. 2013. Genetic bases of rice grain shape: so many genes, so little known. Trends in Plant Science, 18, 218–226.
Huo D G, Ning Q, Shen X M, Liu L, Zhang Z X. 2016. QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PLoS ONE, 11, e0155506.
Jiang L, Ge M, Zhao H and Zhang T F. 2015. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize. PLoS ONE, 10, e0124779.
Lariepe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fievet J, Gallais A, Dubreuil P, Charcosset A, Moreau L. 2012. The genetic basis of heterosis: Multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics, 190, 795–811.
Li B J, Zhao W G, Li D R, Chao H B, Zhao X P, Ta N, Li Y H, Guan Z B, Guo L X, Zhang L N, Li S S, Wang H, Li M T. 2018. Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Plant Science, 277, 296–310.
Li H J, Yang Q S, Fan N N, Zhang M, Zhai H J, Ni Z F, Zhang Y R. 2017a. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid Zhengdan 958 by design III. BMC Genetics, 18, 36.
Li H J, Yang Q S, Gao L L, Zhang M, Ni Z F, Zhang Y R. 2017b. Identification of heterosis-associated stable QTLs for ear-weight-related traits in an elite maize hybrid Zhengdan 958 by design III. Frontiers in Plant Science, 8, 561.
Li W L, Bai Q H, Zhan W M, Ma C Y, Wang S Y, Feng Y Y, Zhang M D, Zhu Y, Cheng M, Xi Z Y. 2019. Fine mapping and candidate gene analysis of qhkw5-3, a major QTL for kernel weight in maize. Theoretical and Applied Genetics, 132, 2579–2589.
Li X, Li X R, Fridman E, Tesso T T, Yu J M. 2015. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proceedings of the National Academy of Sciences of the United States of America, 112, 11823–11828.
Li Y X, Li C H, Bradbury P J, Liu X L, Lu F, Romay C M, Glaubitz J C, Wu X, Peng B, Shi Y S, Song Y C, Zhang D F, Buckler E S, Zhang Z W, Li Y, Wang T Y. 2016. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. The Plant Journal, 86, 391–402.
Lin C, An Y X, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang T Y, Yu L. 2017. Candidate loci for ear-related traits in maize revealed by a combination of metaQTL analysis and regional association mapping. Frontiers in Plant Science, 8, 2190.
Liu C L, Zhou Q, Dong L, Wang H, Liu F, Weng J F, Li X H, Xie C X. 2016. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics, 17, 915.
Liu L, Du Y F, Huo D G, Wang M, Shen X M, Yue B, Qiu F Z, Zheng Y L, Yan J B, Zhang Z X. 2015a. Genetic architecture of maize kernel row number and whole genome prediction. Theoretical and Applied Genetics, 128, 2243–2254.
Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. 2015b. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics, 11, e1005670.
Liu Y H, Yi Q, Hou X B, Hu Y F, Li Y P, Yu G W, Liu H M, Zhang J J, Huang Y B. 2020. Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.). Molecular Genetics and Genomics, 295, 121–133.
Liu Z H, Ji H Q, Cui Z T, Wu X, Duan L J, Feng X X, Tang J H. 2011. QTL detected for grain-filling rate in maize using a RIL population. Molecular Breeding, 27, 25–36.
Lu H, Romero-Severson J, Bernardo R. 2003. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theoretical and Applied Genetics, 107, 494–502.
Ma F Y, Du J, Wang D C, Wang H, Zhao B B, He G H, Yang Z L, Zhang T, Wu R H, Zhao F M. 2020. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. Journal of Integrative Agriculture, 19, 1163–1169.
Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S Q, Liu J J, Ding P Y, Habib A, Mu Y, Tang H P, Liu Y X, Jiang Q T, Chen G Y, Wang J R, Li W, Pu Z E, Zheng Y L, Wei Y M, et al. 2020. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with ear-related traits. Theoretical and Applied Genetics, 133, 297–315.
Melchinger A E, Piepho H P, Utz H F, Muminovic J, Wegenast T, Torjek O, Altmann T, Kusterer B. 2007. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics, 177, 1827.
Monaco M K, Sen T Z, Dharmawardhana P D, Ren L, Schaeffer M, Naithani S, Amarasinghe V, Thomason J, Harper L, Gardiner J. 2013. Maize metabolic network construction and transcriptome analysis. Plant Genome, 6, doi: 10.3835/plantgenome2012.09.0025.
Muth J R, Muller M, Lohmer S, Salamini F, Thompson R D. 1996. The role of multiple binding sites in the activation of zein gene expression by Opaque-2. Molecular Genetics and Genomics, 252, 723–732.
Pan Q C, Deng M, Yan J B, Li L. 2017. Complexity of genetic mechanisms conferring nonuniformity of recombination in maize. Scientific Reports, 7, 1205.
Pozzi C, Rossini L, Vecchietti A, Salamini F. 2004. Gene and genome changes during domestication of cereals. In: Gupta P K, Varshney R K, eds., Cereal Genomics. Springer, Dordrecht, Netherlands. pp. 165–195.
Pysh L D, Schmidt R J. 1996. Characterization of the maize OHP1 gene: evidence of gene copy variability among inbreds. Gene, 177, 203–208.
Qi X, Li S X, Zhu Y X, Zhao Q, Zhu D Y, Yu J J. 2017. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. Plant Molecular Biology, 93, 7–20.
Ramya P, Chaubal A, Kulkarni K, Gupta L, Gupta V. 2010. QTL mapping of 1 000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). Journal of Applied Genetics, 51, 421–429.
Shang L G, Liang Q Z, Wang Y M, Zhao Y P, Wang K B, Hua J P. 2016. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theoretical and Applied Genetics, 129, 1429–1446.
Shang L G, Wang Y M, Cai S H, Wang X C, Li Y H, Abduweli A, Hua J P. 2015. Partial dominance, overdominance, epistasis and QTL by environment interactions contribute to heterosis in two upland cotton hybrids. G3 Genes/Genomes/Genetics, 6, 499–507.
Shar T, Sheng Z H, Ali U, Fiaz S, Tang S Q. 2020. Mapping quantitative trait loci associated with starch paste viscosity attributes by using double haploid populations of rice (Oryza sativa L.). Journal of Integrative Agriculture, 19, 1691–1703.
Shen G J, Zhan W, Chen H X, Xing Y Z. 2014. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Science, 215–216, 11–18.
Song W B, Wang B B, Hauck A L, Dong X M, Li J P, Lai J S. 2016. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population. Journal of Integrative Plant Biology, 58, 266–279.
Song X J, Ashikari M. 2008. Toward an optimum return from crop plants. Rice, 1, 135–143.
Statista. 2020. Worldwide production of grain in 2019/20, by type. [2020-11-28]. https://www.statista.com/statistics/263977/world-grain-production-by-type/
Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 132, 823–839.
Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. 2014. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 46, 652–656.
Tang J H, Yan J B, Ma X Q, Teng W T, Dai J R, Dhillon B S, Melchinger A E, Li J S. 2010. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theoretical and Applied Genetics, 120, 333–340.
Wang B B, Liu H, Liu Z L, Dong X M, Guo J J, Li W, Chen J, Gao C, Zhu Y B, Zheng X M, Chen Z L, Chen J, Song W B, Hauck A, Lai J S. 2018a. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biology, 18, 17.
Wang B B, Zhu Y B, Zhu J J, Liu Z P, Liu H, Dong X M, Guo J, Li W, Chen J, Gao C, Zheng X M, E L Z, Lai J S, Zhao H M, Song W B. 2018b. Identification and fine-mapping of a major maize leaf width QTL in a re-sequenced large recombinant inbred lines population. Frontiers in Plant Science, 9, 101.
Wang G, Zhong M Y, Shuai B L, Song J D, Zhang J, Han L, Ling H L, Tang Y P, Wang G F, Song R T. 2017. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. New Phytologist, 214, 1563–1578. 
Wang H, He Y, Wang S C. 2017. QTL mapping of general combining abilities of four traits in maize using a high-density genetic map. Journal of Integrative Agriculture, 16, 1700–1707.
Wang H Q, Zhang X G, Yang H L, Liu X Y, Li H M, Yuan L, Li W H, Fu Z Y, Tang J H, Kang D M. 2016. Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize. Scientific Reports, 6, 38205.
Wang J, Lin Z L, Zhang X, Liu H Q, Zhou L N, Zhong S Y, Li Y, Zhu C, Lin Z W. 2019. krn1, a major quantitative trait locus for kernel row number in maize. New Phytologist, 223, 1634–1646.
Xing Y Z, Zhang Q F. 2010. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 61, 421–442.
Xiu Z H, Sun F, Shen Y, Zhang X Y, Jiang R C, Bonnard G, Zhang J H, Tan B C. 2016. EMPTY PERICARP16 is required for mitochondrial nad2 intron 4 cis-splicing, complex I assembly and seed development in maize. The Plant Journal, 85, 507–519.
Xue P, Zhang Y X, Lou X Y, Zhu A K, Chen Y Y, Sun B, Yu P, Cheng S H, Cao L Y, Zhan X D. 2019. Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.). Journal of Integrative Agriculture, 18, 1838–1850.
Xue Y, Warburton M L, Sawkins M, Zhang X, Setter T, Xu Y, Grudloyma P, Gethi J, Ribaut J M, Li W, Zhang X, Zheng Y and Yan J. 2013. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theoretical and Applied Genetics, 126, 2587–2596.
Yan B, Liu R J, Li Y B, Wang Y, Gao G J, Zhang Q L, Liu X, Jiang G H, He Y Q. 2014. QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding. Breeding Science, 64, 231–239.
Yan J B, Kandianis C B, Harjes C E, Bai L, Kim E H, Yang X H, Skinner D J, Fu Z Y, Mitchell S, Li Q, Fernandez M G S, Zaharieva M, Babu R, Fu Y, Palacios N, Li J S, DellaPenna D, Brutnell T, Buckler E S, Warburton M L, Rocheford T. 2010. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nature Genetics, 42, 322–374.
Yang J L, Mezmouk S, Baumgarten A, Buckler E S, Guill K E, McMullen M D, Mumm R H, Ross-Ibarra J. 2017. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genetics, 13, e1007019.
Yang L M, Liu H Q, Zhao J Y, Pan Y P, Cheng S Y, Lietzow C D, Wen C L, Zhang X L, Weng Y Q. 2018. LITTLELEAF (LL) encodes a WD40 repeat domain containing protein associated with organ size variation in cucumber. The Plant Journal, 95, 834–847.
Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, Wang Y B, Xu P W, Peng Y, Shi Z X, Lan L, Ma Z Y, Yang X, Zhang Q Q, Bai M Z, Li S, et al. 2019. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 51, 1052–1059.
Yi F, Gu W, Chen J, Song N, Gao X, Zhang X B, Zhou Y S, Ma X X, Song W B, Zhao H M, Eddi E, Asher P, Nicholas J P, Lai J S. 2019. High temporal-resolution transcriptome landscape of early maize seed development. The Plant Cell, 31, 974–992.
Yi Q, Liu Y H, Hou X B, Zhang X G, Li H, Zhang J J, Liu H M, Hu Y F, Yu G W, Li Y P, Wang Y B, Huang Y B. 2019. Genetic dissection of ear-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). BMC Plant Biology, 19, 392.
Zhan J P, Li G S, Ryu C H, Ma C, Zhang S S, Lloyd A, Hunter B G, Larkins B A, Drews G N, Wang X F, Yadegari R. 2018. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. The Plant Cell, 30, 2425–2446. 
Zhang X X, Guan Z R, Wang L, Fu J, Zhang Y C, Li Z L, Ma L L, Liu P, Zhang Y L, Liu M, Li P, Zou C Y, He Y C, Lin H J, Yuan G S, Gao S B, Pan G T, Shen Y O. 2020. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize. Molecular Genetics and Genomics, 295, 409–420.
Zhang Z H, Liu Z H, Hu Y M, Li W H, Fu Z Y, Ding D, Li H C, Qiao M M, Tang J H. 2014. QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS ONE, 9, e89645.
Zhang Z H, Wu X Y, Shi C N, Wang R N, Li S F, Wang Z H, Liu Z H, Xue Y D, Tang G L, Tang J H. 2016. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population. Molecular Genetics and Genomics, 291, 437–454.
Zhang Z M, Zhao M J, Ding H P, Rong T Z, Pan G T. 2006. QTL mapping analysis of plant height and ear height of maize (Zea mays L.). Genetika, 42, 391–396.
Zhang Z Y, Li J J, Tang Z S, Sun X M, Zhang H L, Yu J P, Yao G X, Li G L, Guo H F, Li J L, Wu H M, Huang H G, Xu Y W, Yin Z G, Qi Y H, Huang R F, Yang W C, Li Z C. 2018. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3–OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. Journal of Experimental Botany, 69, 4723–4737.
Zhou C Y, Xiong H C, Li T Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Song X Y, Liu L X. 2020. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 19, 1721–1730.
Zhou G, Chen Y, Yao W, Zhang C J, Xie W B, Hua J P, Xing Y Z, Xiao J H, Zhang Q F. 2012. Genetic composition of yield heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the United States of America, 109, 15847–15852.
Zhou Q, Dong Y B, Shi Q L, Zhang L, Chen H Q, Hu C H, Li Y L. 2017. Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.). Molecular Genetics and Genomics, 292, 871–881.
Zhu D, Zhou G, Xu C G, Zhang Q F. 2016. Genetic components of heterosis for seedling traits in an elite rice hybrid analyzed using an immortalized F2 population. Journal of Genetics and Genomics, 43, 87–97.
Zhu X M, Shao X Y, Pei Y H, Guo X M, Li J, Song X Y, Zhao M A. 2018. Genetic diversity and genome-wide association study of major ear quantitative traits using high-density SNPs in maize. Frontiers in Plant Science, 9, 966.

[1] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
[2] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[3] DU Kang, ZHAO Wen-qing, ZHOU Zhi-guo, SHAO Jing-jing, HU Wei, KONG Ling-jie, WANG You-hua. Hormonal changes play important roles in the key period of superior and inferior earshoot differentiation in maize[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3143-3155.
[4] LUO Jiang-tao, ZHENG Jian-min, WAN Hong-shen, YANG Wu-yun, LI Shi-zhao, PU Zong-jun . Identification of QTL for adult plant resistance to stripe rust in bread wheat line C33[J]. >Journal of Integrative Agriculture, 2020, 19(3): 624-631.
[5] HAO Lu-yang, LIU Xu-yang, ZHANG Xiao-jing, SUN Bao-cheng, LIU Cheng, ZHANG Deng-feng, TANG Huai-jun, LI Chun-hui, LI Yong-xiang, SHI Yun-su, XIE Xiao-qing, SONG Yan-chun, WANG Tian-yu, LI Yu .
Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 449-464.
[6] Aejaz Ahmad DAR, Susheel SHARMA, Reetika MAHAJAN, Muntazir MUSHTAQ, Ankila SALATHIA, Shahid AHAMAD, Jag Paul SHARMA. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[7] WANG Shi-ming, CUI Guo-qing, WANG Hui, MA Fu-ying, XIA Sai-sai, LI Yun-feng, YANG Zheng-lin, LING Ying-hua, ZHANG Chang-wei, HE Guang-hua, ZHAO Fang-ming. Identification and QTL mapping of Z550, a rice backcrossed inbred line with increased grains per panicle[J]. >Journal of Integrative Agriculture, 2019, 18(3): 526-531.
[8] PENG Zhen, WANG Pei, TANG Die, SHANG Yi, LI Can-hui, HUANG San-wen, ZHANG Chun-zhi. Inheritance of steroidal glycoalkaloids in potato tuber flesh[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2255-2263.
[9] HU Da-wei, SHENG Zhong-hua, LI Qian-long, CHEN Wei, WEI Xiang-jin, XIE Li-hong, JIAO Gui-ai, SHAO Gao-neng, WANG Jian-long, TANG Shao-qing, HU Pei-song. Identification of QTLs associated with cadmium concentration in rice grains[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1563-1573.
[10] ZHOU Yu-qian, WANG Qin-yang, ZHAO Hai-liang, GONG Dian-ming, SUN Chuan-long, REN Xue-mei, LIU Zhong-xiang, HE Hai-jun, QIU Fa-zhan. Unravelling transcriptome changes between two distinct maize inbred lines using RNA-seq[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1574-1584.
[11] CHEN Dan, WU Xiao-yang, WU Kuo, ZHANG Jin-peng, LIU Wei-hua, YANG Xin-ming, LI Xiu-quan, LU Yu-qing, LI Li-hui. Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2386-2401.
[12] WANG Hai, HE Yan, WANG Shou-cai. QTL mapping of general combining abilities of four traits in maize using a high-density genetic map[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1700-1707.
[13] Md Habibur Rahman, ZHANG Ying-xin, SUN Lian-ping, ZHANG Ke-qin, Md Sazzadur Rahman, WU Wei-xun, ZHAN Xiao-deng, CAO Li-yong, CHENG Shi-hua . Genetic mapping of quantitative trait loci for the stigma exsertion rate in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1423-1431.
[14] ZHANG Dong-feng, ZHANG Nan, ZHONG Tao, WANG Chao, XU Ming-liang, YE Jian-rong. Identification and characterization of the GH3 gene family in maize[J]. >Journal of Integrative Agriculture, 2016, 15(2): 249-261.
[15] YAO Xiao-yun, WANG Jia-yu, LIU Jin, WANG Wei, YANG Sheng-long, ZHANG Yu, XU Zheng-jin. Comparison and analysis of QTLs for grain and hull thickness related traits in two recombinant inbred line (RIL) populations in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2437-2450.
No Suggested Reading articles found!