Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (3): 526-531    DOI: 10.1016/S2095-3119(18)61996-3
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification and QTL mapping of Z550, a rice backcrossed inbred line with increased grains per panicle
WANG Shi-ming, CUI Guo-qing, WANG Hui, MA Fu-ying, XIA Sai-sai, LI Yun-feng, YANG Zheng-lin, LING Ying-hua, ZHANG Chang-wei, HE Guang-hua, ZHAO Fang-ming
Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P.R.China
Download:  PDF (310KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  
An elite backcrossed inbred line Z550 with increased grains per panicle was identified from advanced backcrosses between Nipponbare and Xihui 18 by simple sequence repeat (SSR) marker-assisted selection (MAS).  Z550 carries 13 substitution segments distributed on chromosomes 1, 6, 7, 8, 9, 10, and 12, with an average substitution length of 1.68 Mb.  Compared with the Nipponbare parental line, plant height, panicle length, spikelets per panicle, grains per panicle, and grain weight for Z550 were significantly increased.  While the grain width of Z550 was significantly narrower, and the seed setting ratio (81.43%) was significantly lower than that of Nipponbare, it is still sufficient for breeding purposes.  Quantitative trait loci (QTLs) mapping for important agronomic traits was conducted with the F2 population derived from Nipponbare crossed with Z550 using the restricted maximum likelihood (REML) method.  A total of 16, including 12 previously unreported QTLs were detected, with contribution rates ranging from 1.46 to 10.49%.  Grains per panicle was controlled by 8 QTLs, 5 of which increased number of grains whereas 3 decreased it.  qGPP-1, with the largest contribution (10.49%), was estimated to increase grains per panicle by 30.67, while qGPP-9, with the minimum contribution rate (2.47%), had an effect of increasing grains per panicle by 15.79.  These results will be useful for further development of single segment substitution lines with major QTLs, and for research of their molecular functions via QTL cloning.
 
Keywords:  rice        backcrossed inbred line        yield        QTL mapping  
Received: 19 January 2018   Accepted:
Fund: The study was supported by the National Key R&D Program of China (2017YFD0100202), the Chongqing Science and Technology Commission Special Project, China (cstc2016shms-ztzx0017), and the Southwestern University Basic Operating Expenses Special Innovation Team Project, China (XDJK2017A004).
Corresponding Authors:  Correspondence ZHAO Fang-ming, Tel: +86-23-68250486, E-mail: zhaofangming2004@163.com   
About author:  WANG Shi-ming, E-mail: wangshiming1993@126.com;

Cite this article: 

WANG Shi-ming, CUI Guo-qing, WANG Hui, MA Fu-ying, XIA Sai-sai, LI Yun-feng, YANG Zheng-lin, LING Ying-hua, ZHANG Chang-wei, HE Guang-hua, ZHAO Fang-ming. 2019. Identification and QTL mapping of Z550, a rice backcrossed inbred line with increased grains per panicle. Journal of Integrative Agriculture, 18(3): 526-531.

Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. 2010. The small and round seed1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes & Genetic Systems, 85, 327.
Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Enrique R, Angeles Q Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science, 309, 741–745.
Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N. 2010. Identification of candidate genes for grain number in rice (Oryza sativa L.). Functional & Integrative Genomics, 10, 339–347.
Huang X, Qian Q, Liu Z, Sun H, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 41, 494.
Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. 2010. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant & Cell Physiology, 51, 47–57.
Li W, Wu J, Weng S, Zhang Y J, Zhang D P, Shi C H. 2010. Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta, 232, 1383–1396.
Liu T, Mao D, Zhang S, Xu C, Xing Y. 2009. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theoretical and Applied Genetics, 118, 1509–1517.
McCouch S R, Kochert G, Yu Z H. 1988. Molecular mapping of rice chromosome. Theoretical and Applied Genetics, 76, 148–159
Moralesramos Á I, Li Y H, Hilfiker M, Mecom J S, Eidam P, Shi D C, Tseng P, Brooks C, Zhang D, Wang N, Jaworski J, Morrow D, Fries H, Edwards R, Jin J. 2011. Structure-activity relationship studies of novel 3-oxazolidinedione-6-naphthyl-2-pyridinones as potent and orally bioavailable EP3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 21, 2806–2811.
Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. 1991. Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics, 127, 181–197.
Piao R, Jiang W Z, Ham T H, Choi M S, Qiao Y, Chu S H, Park J, Woo M O, Jin Z X, An G, Lee J Y, Kohet H J. 2009. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theoretical and Applied Genetics, 119, 1497–506.
SAS Institute. 2009. SAS/STAT: Users’ guide. version 9.3. http://suport.sus.com/publishing
Tan Y F, Li J X, Yu S B, Xu C G, Zhang Q F, Xing Y Z. 2000. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theoretical and Applied Genetics, 101, 823–829.
Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q. 2008. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single mendelian factor in rice. Theoretical and Applied Genetics, 116, 789–796.
Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 40, 761–767.
Yu H, Murchie E H, Gonzálezcarranza Z H, Pyke K A, Roberts J A. 2015. Decreased photosynthesis in the erect panicle 3
(EP3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development. Journal of Experimental Botany, 66, 1543.
Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z. 2016. Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTLs for agronomic traits from the F3 population. Cereal Research Communication, 44, 1–11.
Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G. 2009. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 183, 315.
Zhu K, Tang D, Yan C, Chi Z C, Yu H X, Chen J M, Liang J S, Gu M H, Cheng Z K. 2010. ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 184, 343.
[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[3] Valensi Kautsar, Takamori Kanno, Kaho Sakai, Riza Kurnia Sabri, Keitaro Tawaraya, Kazunobu Toriyama, Kazuhiko Kobayashi, Weiguo Cheng. Reconstructed organic rice fields: Effects on soil organic carbon, total nitrogen, their mineralization, and rice yield in Japanese Andosols[J]. >Journal of Integrative Agriculture, 2026, 25(2): 493-500.
[4] Chao Zhang, Shanshan Li, Fan Yang, Ruifa Hu.

Does the adoption of direct-seeded rice affect pesticide use?  Evidence from China [J]. >Journal of Integrative Agriculture, 2026, 25(1): 366-376.

[5] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[6] Yunji Xu, Xuelian Weng, Shupeng Tang, Xiufeng Jiang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Alternate wetting and moderate drying irrigation improves rice cooking and eating quality by optimizing lipid and fatty acid synthesis in grains[J]. >Journal of Integrative Agriculture, 2026, 25(1): 68-80.
[7] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[8] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[9] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[10] Siriyaporn Chanapanchai, Wahdan Fitriya, Ida Bagus Made Artadana, Kanyaratt Supaibulwatana. Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3004-3023.
[11] Jianan Li, Weidong Li, Wenjie Ou, Waqas Ahmed, Mohsin Mahmood, Ahmed S. M. Elnahal, Haider Sultan, Zhan Xin, Sajid Mehmood. Alleviating vanadium-induced stress on rice growth using phosphorus-loaded biochar[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2525-2539.
[12] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[13] Weiguang Yang, Bin Zhang, Weicheng Xu, Shiyuan Liu, Yubin Lan, Lei Zhang. Impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters: A case study using the MST++ model[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2540-2557.
[14] Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2106-2122.
[15] Tongming Wang, Kai Zhou, Bingxian Yang, Benoit Lefebvre, Guanghua He. OsEXO70L2 is required for large lateral root formation and arbuscular mycorrhiza establishment in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2035-2045.
No Suggested Reading articles found!