Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 2949-2960    DOI: 10.1016/j.jia.2023.03.004
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines

HUANG Feng1, 2*, LI Xuan-shuang2*, DU Xiao-yu1, LI Shun-cheng1, LI Nan-nan1, LÜ Yong-jun1, ZOU Shao-kui1, ZHANG Qian1, WANG Li-na1, NI Zhong-fu2, HAN Yu-lin1, XING Jie-wen2#

1 Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, P.R.China
2 Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

千粒重(TGW)、穗粒数(GNS)和穗粒重(GWS)是小麦产量的重要组成部分。为了解析其遗传学基础,我们构建了一个由8762/Keyi5214衍生的198个系组成的DH群体,利用基因芯片对该DH群体进行基因型鉴定,并将产量相关性状千粒重、穗粒数和穗粒重表型整合并进行QTL定位。最后,我们共获得18,942个多态性SNP标记,并鉴定出41个与这些性状相关的关键QTL。我们在染色体2D6A上鉴定出三个稳定的千粒重QTL (QTgw-2D.3, QTgw-2D.4, QTgw-6A.1),其增效等位基因均来自亲本8762,解释了4.81%-18.67%的表型变异。在染色体3D5B5D6A上鉴定出5个稳定的穗粒数QTL,其中QGns-5D.1来自亲本8762,其余4个来自亲本Keyi5214QTL解释了5.89-7.08%的表型变异。此外,还发现了一个稳定的小麦穗粒重遗传位点QGws-4A.3,该位点来自亲本8762,可解释6.08-6.14%的表型变异。为了应用鉴定到的QTL,我们为四个重要的QTL (Tgw2D.3-2, Tgw2D.4-1, Tgw6A.1 和 Gns3D.1)开发了STARP标记。本研究结果可为后期小麦千粒重、穗粒数和单穗重相关基因的鉴定和克隆奠定基础。



Abstract  

As important yield-related traits, thousand-grain weight (TGW), grain number per spike (GNS) and grain weight per spike (GWS) are crucial components of wheat production.  To dissect their underlying genetic basis, a double haploid (DH) population comprised of 198 lines derived from 8762/Keyi 5214 was constructed.  We then used genechip to genotype the DH population and integrated the yield-related traits TGW, GNS and GWS for QTL mapping.  Finally, we obtained a total of 18 942 polymorphic SNP markers and identified 41 crucial QTLs for these traits.  Three stable QTLs for TGW were identified on chromosomes 2D (QTgw-2D.3 and QTgw-2D.4) and 6A (QTgw-6A.1), with additive alleles all from the parent 8762, explaining 4.81–18.67% of the phenotypic variations.  Five stable QTLs for GNS on chromosomes 3D, 5B, 5D and 6A were identified.  QGns-5D.1 was from parent 8762, while the other four QTLs were from parent Keyi 5214, explaining 5.89–7.08% of the GNS phenotypic variations.  In addition, a stable GWS genetic locus QGws-4A.3 was detected from the parent 8762, which explained 6.08–6.14% of the phenotypic variations.  To utilize the identified QTLs, we developed STARP markers for four important QTLs, Tgw2D.3-2, Tgw2D.4-1, Tgw6A.1 and Gns3D.1.  Our results provide important basic resources and references for the identification and cloning of genes related to TGW, GNS and GWS in wheat.

Keywords:  TGW        GNS        GWS        QTL mapping        wheat  
Received: 08 November 2022   Accepted: 10 February 2023
Fund: 

This work was supported by the Henan Modern Agricultural Industrial Technology System Construction, China (HARS-22-1-Z7).

About author:  #Correspondence XING Jie-wen, E-mail: Jiewen.Xing@cau.edu.cn * These authors contributed equally to this study.

Cite this article: 

HUANG Feng, LI Xuan-shuang, DU Xiao-yu, LI Shun-cheng, LI Nan-nan, LÜ Yong-jun, ZOU Shao-kui, ZHANG Qian, WANG Li-na, NI Zhong-fu, HAN Yu-lin, XING Jie-wen. 2023. SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines. Journal of Integrative Agriculture, 22(10): 2949-2960.

Acreche M M, Slafer G A. 2006. Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Research, 98, 52-59.

Alamerew S, Chebotar S, Huang X, Röder M, Börner A. 2004. Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genetic Resources and Crop Evolution, 51, 559-567.

Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, Pozniak C J, Choulet F, Distelfeld A, Poland J, Ronen G, Sharpe A G, Barad O, Baruch K, Keeble-Gagnère G, Mascher M, Ben-Zvi G, Josselin A A, Himmelbach A, Balfourier F, et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.

Avni R, Nave M, Barad O, Baruch K, Twardziok S O, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan K W, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan R P, Sharpe A G, Fritz A, Ben-David R, et al. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93-97.

Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T. 2012. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theoretical and Applied Genetics, 125, 1473-1485.

Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 105, 921-936.

Calderini D F, Castillo F M, Arenas M A, Molero G, Reynolds M P, Craze M, Bowden S, Milner M J, Wallington E J, Dowle A, Gomez L D, McQueen-Mason S J. 2021. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. New Phytologist, 230, 629-640.

Chen H, Jiao C, Wang Y, Wang Y, Tian C, Yu H, Wang J, Wang X, Lu F, Fu X, Xue Y, Jiang W, Ling H, Lu H, Jiao Y. 2019. Comparative population genomics of bread wheat (Triticum aestivum) reveals its cultivation and breeding history in China. bioRxiv, 519587. 

Chen Z, Cheng X, Chai L, Wang Z, Bian R, Li J, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z, 2019. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 133, 149-162.

Czyczyło-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stojałowski S, Myśków B, Milczarski P, Quarrie S. 2011. Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genetic Resources, 9, 291-295.

Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S. 2011. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theoretical and Applied Genetics, 122, 281-289.

Deng Z, Cui Y, Han Q, Fang W, Li J, Tian J. 2017. Discovery of consistent QTLs of wheat spike-related traits under nitrogen treatment at different development stages. Frontiers in Plant Science, 8, 2120.

Ding P Y, Mo Z Q, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G D, Chen G Y, Wang J R, Li W, Qi P F, Jiang Y F, Kang H Y, Yan G J, Wei Y M, Zheng Y L, Lan X J, Ma J. 2022. A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds. Journal of Integrative Agriculture, 21, 1551-1562.

Duan X, Yu H, Ma W, Sun J, Zhao Y, Yang R, Ning T, Li Q, Liu Q, Guo T, Yan M, Tian J, Chen J. 2020. A major and stable QTL controlling wheat thousand grain weight: Identification, characterization, and CAPS marker development. Molecular Breeding, 40, 68.

Dvorak J, Luo M C, Yang Z L, Zhang H B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97, 657-670.

Gaju O, Reynolds M P, Sparkes D L, Foulkes M J. 2009. Relationships between large-spike phenotype, grain number, and yield potential in Spring Wheat. Crop Science, 49, 961-973.

Gupta P K, Balyan H S, Sharma S, Kumar R. 2020. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 133, 1569-1602.

He Z, Zhuang Q, Cheng S, Yu Z, Zhao Z, Liu X. 2018. Wheat production and technology improvement in China. Journal of Agriculture, 8, 99-106.

Jia J, Xie Y, Cheng J, Kong C, Wang M, Gao L, Zhao F, Guo J, Wang K, Li G, Cui D, Hu T, Zhao G, Wang D, Ru Z, Zhang Y. 2021. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biology, 22, 26.

Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H, Zhang C, Yan J, Zhang P, Wan Y, Xia X. 2019. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 19, 168.

Li Q, Hu R, Guo Z, Wang S, Gao C, Jiang Y, Tang J, Yin G. 2021. SNP-based identification of QTL for resistance to black point caused by Bipolaris sorokiniana in bread wheat. The Crop Journal, 3, 767-774.

Li T, Deng G, Su Y, Yang Z, Tang Y, Wang J, Zhang J, Qiu X, Pu X, Yang W, Li J, Liu Z, Zhang H, Liang J, Yu M, Wei Y, Long H. 2021. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 135, 257–271.

Lin Y, Jiang X, Hu H, Zhou K, Wang Q, Yu S, Yang X, Wang Z, Wu F, Liu S, Li C, Deng M, Ma J, Chen G, Wei Y, Zheng Y, Liu Y. 2021. QTL mapping for grain number per spikelet in wheat using a high-density genetic map. The Crop Journal, 9, 1108-1114.

Liu H, Mullan D, Zhao S, Zhang Y, Ye J, Wang Y, Zhang A, Zhao X, Liu G, Zhang C, Chan K, Lu Z, Yan G. 2022. Genomic regions controlling yield-related traits in spring wheat: a mini review and a case study for rainfed environments in Australia and China. Genomics, 114, 110268.

Liu S, Zhou R, Dong Y, Li P, Jia J. 2006. Development, utilization of introgression lines using a synthetic wheat as donor. Theoretical and Applied Genetics, 112, 1360-1373.

Long Y, Chao W, Ma G, Xu S, Qi L. 2017. An innovative SNP genotyping method adapting to multipleplatforms and throughputs. Theoretical and Applied Genetics, 130, 597–607.Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. 2006. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Molecular Genetics and Genomics, 277, 31-42.

Miao Y, Jing F, Ma J, Liu Y, Zhang P, Chen T, Che Z, Yang D. 2022. Major genomic regions for wheat grain weight as revealed by QTL linkage mapping and meta-analysis. Frontiers in Plant Science, 13, 802310.

Miao L, Li Y, Zhang H, Zhang H, Liu X, Wang J, Chang X, Mao X, Jing R. 2021. TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat. Journal of Integrative Agriculture, 20, 46-54.Mir R R, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan H S, Gupta P K. 2012. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Molecular Breeding, 29, 963-972.

Narjesi V, Mardi M, Hervan E M, Azadi A, Naghavi M R, Ebrahimi M, Zali A A. 2015. Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (Triticum aestivum L.) under normal and salt-stress conditions. Plant Molecular Biology Reporter, 33, 2030–2040.

Pang Y, Liu C, Wang D, St Amand P, Bernardo A, Li W, He F, Li L, Wang L, Yuan X, Dong L, Su Y, Zhang H, Zhao M, Liang Y, Jia H, Shen X, Lu Y, Jiang H, Wu Y, et al. 2020. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in sheat. Molecular Plant, 13, 1311-1327.

Peng J H, Sun D, Nevo E. 2011. Domestication evolution, genetics and genomics in wheat. Molecular Breeding, 28, 281-301.

Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, et al. 2005. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring×SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics, 110, 865-880.

Rauf S, Zaharieva M, Warburton M, Zhang P, Al-Sadi A, Khalil F, Kozak M, Tariq S. 2015. Breaking wheat yield barriers requires integrated efforts in developing countries. Journal of Integrative Agriculture, 14, 1447-1474.

Sheoran S, Jaiswal S, Raghav N, Sharma R, Sabhyata, Gaur A, Jaisri J, Tandon G, Singh S, Sharma P, Singh R, Iquebal M A, Angadi U B, Gupta A, Singh G, Singh G P, Rai A, Kumar D, Tiwari R. 2021. Genome-wide association study and post-genome-wide association study analysis for spike fertility and yield related traits in bread wheat. Frontiers in Plant Science, 12, 820761.

Shoaib M, Yang W, Shan Q, Sun L, Wang D, Sajjad M, Li X, Sun J, Liu D, Zhan K, Zhang A. 2020. TaCKX gene family, at large, is associated with thousand-grain weight and plant height in common wheat. Theoretical and Applied Genetics, 133, 3151-3163.

Singh C, Kumar S, Sharma A K, Bishnoi S K, K G, Mishra C N, Kumar P, Tyagi B S, Gupta A, Sheoran S, Singh G, Gupta V, Kamble U R, Singh C. 2021. Pre-harvest sprouting in wheat: Current status and future prospects. Journal of Cereal Research, 13, 1-22.

Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F. 2020. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 18, 1354-1360.

Tadesse W, Sanchez-Garcia M, Assefa S G, Amri A, Bishaw Z, Ogbonnaya F C, Baum M. 2019. Genetic gains in wheat breeding and its role in feeding the world. Crop Breeding Genetics and Genomics, 1, e190005.

Tura H, Edwards J, Gahlaut V, Garcia M, Sznajder B, Baumann U, Shahinnia F, Reynolds M, Langridge P, Balyan H S, Gupta P K, Schnurbusch T, Fleury D. 2020. QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theoretical and Applied Genetics, 133, 239-257.

Wang D, Pang Y, Dong L, Li A, Kong L, Liu S. 2020. Allelic impacts on pre-harvest sprouting resistance and favorable haplotypes in TaPHS1 of Chinese wheat accessions. The Crop Journal, 8, 515-521. 

Wang X, Guan P, Xin M, Wang Y, Chen X, Zhao A, Liu M, Li H, Zhang M, Lu L, Zhang J, Ni Z, Yao Y, Hu Z, Peng H, Sun Q. 2021. Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments. Theoretical and Applied Genetics, 134, 143-157.

Yang F, Zhang J, Zhao Y, Liu Q, Islam S, Yang W, Ma W. 2022. Wheat glutamine synthetase TaGSr-4B is a candidate gene for a QTL of thousand grain weight on chromosome 4B. Theoretical and Applied Genetics, 135, 2369-2384.

Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu Y G. 2021. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 134, 3083-3109.

Yang Z, Bai Z, Li X, Wang P, Wu Q, Yang L, Li L, Li X. 2012. SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theoretical and Applied Genetics, 125, 1057-1068.

You G X, Zhang X Y, Wang L F. 2005. An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: Information from 96 random accessions with maximized genetic diversity. Molecular Breeding, 14, 397-406.

Zhang L, Dong C, Chen Z, Gui L, Chen C, Li D, Xie Z, Zhang Q, Zhang X, Xia C, Liu X, Kong X, Wang J. 2021. WheatGmap: A comprehensive platform for wheat gene mapping and genomic studies. Molecular Plant, 14, 187-190.

Zhang Y, Liu J, Xia X, He Z. 2014. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 34, 1097-1107.

Zhao D, Yang L, Liu D, Zeng J, Cao S, Xia X, Yan J, Song X, He Z, Zhang Y. 2021. Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat. Theoretical and Applied Genetics, 134, 3731-3741.

Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, Wang R, Liu Y, Qi P, Chen G, Jiang Q, Wei Y, Luo M C, Nevo E, Allaby R G, Liu D, Wang J, Dvorák J, Zheng Y. 2018. Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnology Journal, 16, 280-291.

[1] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[2] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
[3] ZHANG Guang-xin, ZHAO De-hao, FAN Heng-zhi, LIU Shi-ju, LIAO Yun-cheng, HAN Juan. Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3006-3021.
[4] LI Si-ping, ZENG Lu-sheng, SU Zhong-liang. Wheat growth, photosynthesis and physiological characteristics under different soil Zn levels[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1927-1940.
[5] ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de. Integrated pest management programme for cereal blast fungus Magnaporthe oryza[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3420-3433.
[6] ZHAO Lai-bin, XIE Die, HUANG Lei, ZHANG Shu-jie, LUO Jiang-tao, JIANG Bo, NING Shun-zong, ZHANG Lian-quan, YUAN Zhong-wei, WANG Ji-rui, ZHENG You-liang, LIU Deng-cai, HAO Ming. Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2333-2342.
[7] LI Si-nan, CHEN Wen, MA Xin-yao, TIAN Xia-xia, LIU Yao, HUANG Li-li, KANG Zhen-sheng, ZHAO Jie. Identification of eight Berberis species from the Yunnan-Guizhou plateau as aecial hosts for Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1563-1569.
[8] LIU Yang, LI Yu-xiang, LI Yi-xiang, TIAN Zhong-wei, HU Jin-ling, Steve ADKINS, DAI Ting-bo. Changes of oxidative metabolism in the roots of wheat (Triticum aestivum L.) seedlings in response to elevated ammonium concentrations[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1216-1228.
[9] LIU Hang, TANG Hua-ping, LUO Wei, MU Yang, JIANG Qian-tao, LIU Ya-xi, CHEN Guo-yue, WANG Ji-rui, ZHENG Zhi, QI Peng-fei, JIANG Yun-feng, CUI Fa, SONG Yin-ming, YAN Gui-jun, WEI Yuming, LAN Xiu-jin, ZHENG You-liang, MA Jian. Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2849-2861.
[10] LIU Da-zhong, YANG Fei-fei, LIU Sheng-ping. Estimating wheat fractional vegetation cover using a density peak k-means algorithm based on hyperspectral image data[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2880-2891.
[11] XIAO Jing-xiu, ZHU Ying-an, BAI Wen-lian, LIU Zhen-yang, TANG Li, ZHENG Yi. Yield performance and optimal nitrogen and phosphorus application rates in wheat and faba bean intercropping[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3012-3025.
[12] PAN Li-jun, LU Lin, LIU Yu-ping, WEN Sheng-xian, ZHANG Zeng-yan. The M43 domain-containing metalloprotease RcMEP1 in Rhizoctonia cerealis is a pathogenicity factor during the fungus infection to wheat[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2044-2055.
[13] ZHOU Chun-yun, XIONG Hong-chun, LI Yu-ting, GUO Hui-jun, XIE Yong-dun, ZHAO Lin-shu, GU Jiayu, ZHAO Shi-rong, DING Yu-ping, SONG Xi-yun, LIU Lu-xiang. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1721-1730.
[14] FANG Zheng-wu, HE Yi-qin, LIU Yi-ke, JIANG Wen-qiang, SONG Jing-han, WANG Shu-ping, MA Dong-fang, YIN Jun-liang. Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1170-1185.
[15] LIANG Pan-pan, ZHAO Chen, LIN Yuan, GENG Ji-jia, CHEN Yuan, CHEN De-hua, ZHANG Xiang. Effects of sodium benzoate on growth and physiological characteristics of wheat seedlings under compound heavy metal stress[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1010-1018.
No Suggested Reading articles found!