Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (11): 2386-2401    DOI: 10.1016/S2095-3119(17)61711-8
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments
CHEN Dan1, 2*, WU Xiao-yang1*, WU Kuo2, ZHANG Jin-peng1, LIU Wei-hua1, YANG Xin-ming1, LI Xiu-quan1, LU Yu-qing1, LI Li-hui1
1 National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture/Scientific Observation for Rice Germplasm Resources of Yunnan, Ministry of Agriculture/Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract     Grain number per spike (GNPS) is a major factor in wheat yield breeding.  A new wheat germplasm Pubing 3504 shows superior features in spike traits.  To elucidate the genetic basis of spike and yield related traits in Pubing 3504, 282 F2:3 families were generated from the cross Pubing 3504×Jing 4839, and seven spike and yield related traits, including GNPS, spike length (SL), kernel number per spikelet (KPS), spikelet number per spike (SNS), thousand-grain weight (TGW), spike number per plant (SNP), and plant height (HT) were investigated.  Correlation analysis indicated significant positive correlations between GNPS and spike-related traits, including KPS, SNS, and SL, especially KPS.  A genetic map was constructed using 190 polymorphic simple sequence repeat (SSR), expressed sequence tag (EST)-SSR, and sequence-tagged-site (STS) markers.  For the seven traits measured, a total of 37 quantitative trait loci (QTLs) in a single-environment analysis and 25 QTLs in a joint-environment analysis were detected.  Additive effects of 70.3% (in a single environment) and 57.6% (in a joint environment) of the QTLs were positively contributed by Pubing 3504 alleles.  Five important genomic regions on chromosomes 1A, 4A, 4B, 2D, and 4D could be stably detected in different environments.  Among these regions, the marker interval Xmag834–Xbarc83 on the short arm of chromosome 1A was a novel important genomic region that included QTLs controlling GNPS, KPS, SNS, TGW, and SNP with stable environmental repeatability.  This genomic region can improve the spike trait and may play a key role in improving wheat yield in the future.  We deduced that this genomic region was vital to the high GNPS of Pubing 3504.
Keywords:  wheat        high GNPS germplasm        QTL mapping        genomic region  
Received: 28 November 2016   Accepted:

This work was supported by grants from the National Basic Research Program of China (973 Program, 2011CB100104), the National High-Tech R&D Program of China (2011AA100101), the National Natural Science Foundation of China (31071416), the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences and the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02).

Corresponding Authors:  Correspondance LI Li-hui, Tel: +86-10-62186670, Fax: +86-10-62189650, E-mail:    
About author:  CHEN Dan, E-mail:; WU Xiao-yang, E-mail:; * These authors contributed equally to this study.

Cite this article: 

CHEN Dan, WU Xiao-yang, WU Kuo, ZHANG Jin-peng, LIU Wei-hua, YANG Xin-ming, LI Xiu-quan, LU Yu-qing, LI Li-hui. 2017. Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments. Journal of Integrative Agriculture, 16(11): 2386-2401.

Blanco A, Mangini G, Giancaspro A, Giove S, Colasuonno P, Simeone R, Signorile A, De Vita P, Mastrangelo A M, Cattivelli L, Gadaleta A. 2012. Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Molecular Breeding, 30, 79–92.

Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 105, 921–936.

Chen D, Zhang J P, Liu W H, Wu X Y, Yang X M, Li X Q, Lu Y Q, Li L H. 2016. Gene and protein expression profiling analysis of young spike development in large spike wheat germplasms. Journal of Integrative Agriculture, 15, 744–754.

Chen D, Zhang J P, Wang J S, Yang X M, Liu W H, Gao A N, Li X Q, Li LH. 2012. Inheritance and availability of high grain number per spike in two wheat germplasm lines. Journal of Integrative Agriculture, 11, 1409–1416.

Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. 2014. Construction of an integrative linkage map and QTL mapping of grain yield?related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 127, 659–675.

Dellaport S L, Wood J, Hicks J B. 1983. A plant DNA mini-preparation: Version II. Plant Molecular Biology Reporter, 1, 19–21.

Deng S M, Wu X R, Wu Y Y, Zhou R H, Wang H G, Jia J Z, Liu S B. 2011. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat.  Theoretical and Applied Genetics, 122, 281–289.

FAO (Food and Agriculture Organization). 2009. How to feed the world in 2050. In: FAO Expert Meeting, 24–26 June 2009. Rome.

Hai L, Guo H J, Wagner C, Xiao S H, Friedt W. 2008. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 175, 226–232.

Hallauer A R, Miranda J B. 1988. Quantitative Genetics in Maize Breeding. Iowa State University Press, Ames.

Heidari B, Sayed-Tabatabaei B E, Saeidi G, Kearsey M, Suenaga K, Gulick P. 2011. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 54, 517–527.

Kianian S, Quiros C. 1992. Generation of a Brassica oleracea composite RFLP map: Linkage arrangements among various populations and evolutionary implications. Theoretical and Applied Genetics, 84, 544–554.

Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

Li LH, Yang X M, Li X Q, Dong Y C, Chen X M. 1998. Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization. Scientia Agricultura Sinica, 31, 1–5. (in Chinese)

Liao X Z, Wang J, Zhou R H, Ren Z L, Jia J Z. 2008. Mining favorable alleles of QTLs conferring 1 000-grain weight from synthetic wheat.  Acta Agronomica Sinica, 34, 1877–1884.

Lyttle T W. 1991. Segregation distorters. Annual Review of Genetics, 25, 511–581.

Marza F, Bai G H, Carver B F, Zhou W C. 2006. Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark. Theoretical and Applied Genetics, 112, 688–698.

Peng B, Li Y X, Wang Y, Liu C, Liu Z Z, Tan W W, Zhang Y, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. 2011. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theoretical and Applied Genetics, 122, 1305–1320.

Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H S, Chhuneja P, Lagu M, Gupt V. 2010. QTL mapping of 1 000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 51, 421–429.

Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109, 1105–1114.

Wang J, Liao X Z, Yang X J, Zhou R H, Jia J Z. 2008. Mapping of large-spike and much-kernal QTL by using a synthetic wheat Am3 as donor. Journal of Plant Genetic Resources, 9, 277–282.

Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M, Li X Q, Gao A N. 2011. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 177, 277–292.

Wu J, Yang X M, Wang H, Li H Q, Li L H, Li X Q, Liu W H. 2006. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theoretical and Applied Genetics, 114, 13–20.

Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. 2008. QTL network: Mapping and visulaizing genetic architecture of complex traits in experimental populations. Bioinformatics, 24, 721–723.

Yu M, Chen G Y, Zhang L Q, Liu Y X, Liu D C, Wang J R, Pu Z E, Zhang L, Lan X J, Wei Y M, Liu C J, Zheng Y L. 2014. QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp.tauschii. Journal of Integrative Agriculture, 13, 1835–1844.

Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J. 2008. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 117, 181–189.

Zhang J P, Liu W H, Yang X M, Gao A N, Li X Q, Wu X Y, Li L H. 2011. Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Molecular Biology Reports, 38, 2337–2347.

Zhuang Q S. 2003. Chinese Wheat Improvement and Pedigree Analysis. China Agriculture Press, Beijing. (in Chinese)
[1] CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2359-2369.
[2] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[3] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[4] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[5] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[6] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[7] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[8] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[9] DONG Xiu-chun, QIAN Tai-feng, CHU Jin-peng, ZHANG Xiu, LIU Yun-jing, DAI Xing-long, HE Ming-rong. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1351-1365.
[10] JIANG Yun, WANG De-li, HAO Ming, ZHANG Jie, LIU Deng-cai.

Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters [J]. >Journal of Integrative Agriculture, 2023, 22(4): 999-1008.

[11] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[12] Sunusi Amin ABUBAKAR, Abdoul Kader Mounkaila HAMANI, WANG Guang-shuai, LIU Hao, Faisal MEHMOOD, Abubakar Sadiq ABDULLAHI, GAO Yang, DUAN Ai-wang. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(3): 908-922.
[13] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
[14] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
[15] Zaid CHACHAR, Siffat Ullah KHAN, ZHANG Xue-huan, LENG Peng-fei, ZONG Na, ZHAO Jun. Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development[J]. >Journal of Integrative Agriculture, 2023, 22(2): 389-399.
No Suggested Reading articles found!