Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (10): 2255-2263    DOI: 10.1016/S2095-3119(19)62718-8
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Inheritance of steroidal glycoalkaloids in potato tuber flesh
PENG Zhen1, 2, WANG Pei1, 2, TANG Die2, SHANG Yi1, LI Can-hui1, HUANG San-wen2, 3, ZHANG Chun-zhi2
1 The CAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, P.R.China
2 Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, P.R.China
3 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Potato (Solanum tuberosum L.) is the third most important food crop worldwide after wheat and rice in terms of human consumption.  A critical domestication trait for potato was the decrease of toxic steroidal glycoalkaloids (SGAs) in tuber flesh.  Here, we used a diploid F2 segregating population derived from a cross between S. tuberosum and the wild potato species Solanum chacoense to map the quantitative trait loci (QTLs) associated with the regulation of SGAs content in tuber flesh.  In a three-year study, we identified two QTLs on chromosomes 2 and 8 affecting SGAs content in tuber flesh.  The QTL on chromosome 8 harbors 38 genes that are co-expressed with the GLYCOALKALOID METABOLISM genes.  These findings lay the foundation for exploiting the genes controlling SGAs content in tuber flesh and they provide a theoretical basis for the use of wild germplasm in potato breeding.
 
Keywords:  steroidal glycoalkaloids        domestication        tuber flesh        QTL mapping  
Received: 19 January 2019   Accepted:
Fund: This work was also supported by the Ministry of Agriculture and Rural Affairs of China, the Shenzhen Municipal and Dapeng District Governments, China.
Corresponding Authors:  Correspondence ZHANG Chun-zhi, Tel: +86-755-23250675, E-mail: zhangchunzhi01@caas.cn   

Cite this article: 

PENG Zhen, WANG Pei, TANG Die, SHANG Yi, LI Can-hui, HUANG San-wen, ZHANG Chun-zhi. 2019. Inheritance of steroidal glycoalkaloids in potato tuber flesh. Journal of Integrative Agriculture, 18(10): 2255-2263.

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30, 174–178.
Allen S, Carman J, Kuan S S, Ware G M, Octave J, Francis J, Kirschenheuter G P. 1986. Rapid high-performance liquid chromatographic determination of the potato glycoalkaloids α-solanine and α-chaconine. Journal of Agricultural and Food Chemistry, 34, 279–282.
Cardenas P D, Sonawane P D, Heinig U, Bocobza S E, Burdman S, Aharoni A. 2015. The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. Phytochemistry, 113, 24–32.
Cardenas P D, Sonawane P D, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, Giri A P, Goossens A, Burdman S, Aharoni A. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications, 7, 10654.
Dam J, Levin I, Struik P C, Levy D. 2003. Identification of epistatic interaction affecting glycoalkaloid content in tubers of tetraploid potato (Solanum tuberosum L.). Euphytica, 134, 353–360.
Friedman M. 2006. Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. Journal of Agricultural and Food Chemistry, 54, 8655–8681.
Friedman M, Lee K R, Kim H J, Lee I S, Kozukue N. 2005. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. Journal of Agricultural and Food Chemistry, 53, 6162–6169.
Gruber K. 2016. Re-igniting the green revolution with wild crops. Nature Plants, 2, 16048.
Itkin M, Heinig U, Tzfadia O, Bhide A J, Shinde B, Cardenas P D, Bocobza S E, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri A P, Aharoni A. 2013. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered genes. Science, 341, 175–179.
Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, Meir S, Iijima Y, Aoki K, de Vos R, Prusky D, Burdman S, Beekwilder J, Aharoni A. 2011. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. The Plant Cell, 23, 4507–4525.
Jansky S H, Chung Y S, Kittipadukal P. 2014. M6: A diploid potato inbred line for use in breeding and genetics research. Journal of Plant Registrations, 8, 195–199.
Lee K R, Kozukue N, Han J S, Park J H, Chang E Y, Baek E J, Chang J S, Friedman M. 2004. Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. Journal of Agricultural and Food Chemistry, 52, 2832–2839.
Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C. 2018. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 36, 1160–1163.
Manrique-Carpintero N C, Tokuhisa J G, Ginzberg I, Veilleux R E. 2014. Allelic variation in genes contributing to glycoalkaloid biosynthesis in a diploid interspecific population of potato. Theoretical and Applied Genetics, 127, 391–405.
Mweetwa A M, Hunter D, Poe R, Harich K C, Ginzberg I, Veilleux R E, Tokuhisa J G. 2012. Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry, 75, 32–40.
PGSC (The Potato Genome Sequencing Consortium). 2011. Genome sequence and analysis of the tuber crop potato. Nature, 475, 189–195.
Sagredo B, Lafta A, Casper H, Lorenzen J. 2006. Mapping of genes associated with leptine content of tetraploid potato. Theoretical and Applied Genetics, 114, 131–142.
Semagn K, Babu R, Hearne S, Olsen M. 2013. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 33, 1–14.
Sinden S L, Sanford L L, Webb R E. 1984. Genetic and environmental control of potato glycoalkaloids. American Potato Journal, 61, 141–156.
Sonawane P D, Pollier J, Panda S, Szymanski J, Massalha H, Yona M, Unger T, Malitsky S, Arendt P, Pauwels L, Almekias-Siegl E, Rogachev I, Meir S, Cárdenas P D, Masri A, Petrikov M, Schaller H, Schaffer A A, Kamble A, Giri A P, Goossens A, Aharoni A. 2016. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature Plants, 3, 16205.
Sorensen K K, Kirk H G, Olsson K, Labouriau R, Christiansen J. 2008. A major QTL and an SSR marker associated with glycoalkaloid content in potato tubers from Solanum tuberosum×S. sparsipilum located on chromosome I. Theoretical and Applied Genetics, 117, 1–9.
Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. 2014. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Botanical Review, 80, 283–383.
Stokstad E. 2019. The new potato. Science, 363, 574–577.
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. 2013. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 74, 174–183.
Todd A T, Liu E, Polvi S L, Pammett R T, Page J E. 2010. A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. The Plant Journal, 62, 589–600.
Yencho G C, Kowalski S P, Kobayashi R S, Sinden S L, Bonierbale M W, Deahl K L. 1998. QTL mapping of foliar glycoalkaloid aglycones in Solanum tuberosum×
S. berthaultii potato progenies: Quantitative variation and plant secondary metabolism. Theoretical and Applied Genetics, 97, 563–574.
Zhang C Z, Wang P, Tang D, Yang Z M, Lu F, Qi J J, Tawari N R, Shang Y, Li C H, Huang S W. 2019. The genetic basis of inbreeding depression in potato. Nature Genetics, doi: 10.1038/s41588-018-0319-1
Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pre M, Gantet P, Memelink J. 2011. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. The Plant Journal, 67, 61–71.
Zsogon A, Cermak T, Naves E R, Notini M M, Edel K H, Weinl S, Freschi L, Voytas D F, Kudla J, Peres L E P. 2018. De novo domestication of wild tomato using genome editing. Nature Biotechnology, 36, 1211–1216.
[1] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[2] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
[3] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[4] LUO Jiang-tao, ZHENG Jian-min, WAN Hong-shen, YANG Wu-yun, LI Shi-zhao, PU Zong-jun . Identification of QTL for adult plant resistance to stripe rust in bread wheat line C33[J]. >Journal of Integrative Agriculture, 2020, 19(3): 624-631.
[5] Aejaz Ahmad DAR, Susheel SHARMA, Reetika MAHAJAN, Muntazir MUSHTAQ, Ankila SALATHIA, Shahid AHAMAD, Jag Paul SHARMA. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[6] WANG Shi-ming, CUI Guo-qing, WANG Hui, MA Fu-ying, XIA Sai-sai, LI Yun-feng, YANG Zheng-lin, LING Ying-hua, ZHANG Chang-wei, HE Guang-hua, ZHAO Fang-ming. Identification and QTL mapping of Z550, a rice backcrossed inbred line with increased grains per panicle[J]. >Journal of Integrative Agriculture, 2019, 18(3): 526-531.
[7] HU Da-wei, SHENG Zhong-hua, LI Qian-long, CHEN Wei, WEI Xiang-jin, XIE Li-hong, JIAO Gui-ai, SHAO Gao-neng, WANG Jian-long, TANG Shao-qing, HU Pei-song. Identification of QTLs associated with cadmium concentration in rice grains[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1563-1573.
[8] CHEN Dan, WU Xiao-yang, WU Kuo, ZHANG Jin-peng, LIU Wei-hua, YANG Xin-ming, LI Xiu-quan, LU Yu-qing, LI Li-hui. Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2386-2401.
[9] WANG Hai, HE Yan, WANG Shou-cai. QTL mapping of general combining abilities of four traits in maize using a high-density genetic map[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1700-1707.
[10] Md Habibur Rahman, ZHANG Ying-xin, SUN Lian-ping, ZHANG Ke-qin, Md Sazzadur Rahman, WU Wei-xun, ZHAN Xiao-deng, CAO Li-yong, CHENG Shi-hua . Genetic mapping of quantitative trait loci for the stigma exsertion rate in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1423-1431.
[11] YAO Xiao-yun, WANG Jia-yu, LIU Jin, WANG Wei, YANG Sheng-long, ZHANG Yu, XU Zheng-jin. Comparison and analysis of QTLs for grain and hull thickness related traits in two recombinant inbred line (RIL) populations in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2437-2450.
No Suggested Reading articles found!