Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3169-3184    DOI: 10.1016/j.jia.2022.08.082
Special Issue: 油料作物合辑Oil Crops
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.]
JIA Jia1, 2, 3*, WANG Huan1, 2, 3*, CAI Zhan-dong1, 2, 3*, WEI Ru-qian1, 2, 3, HUANG Jing-hua1, 2, 3, XIA Qiu-ju4, XIAO Xiao-hui2, MA Qi-bin1, 2, 3, NIAN Hai1, 2 ,3, CHENG Yan-bo1, 2, 3
1 The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, P.R.China
2 The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, P.R.China
3 Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, P.R.China
4 Beijing Genomics Institute (BGI) Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  大豆炸荚(pod shattering)是大豆重要的生育特性,而在生产上则是影响栽培大豆产量的重要不利因素之一。本研究利用2个重组自交系群体(RIL,CY,华春2号×瓦窑黄豆;GB,桂早1号×巴西13),采用复合区间作图法(composite interval mapping,CIM),对大豆炸荚性状进行QTL定位。两个RIL群体在多个环境下共检测到14个与大豆炸荚相关的QTL,分布于大豆的01、03、03、04、05、05、07、12、14、16、17、18、20和20号染色体上,LOD值介于2.64-44.33,表型解释率为1.33%-50.85%。位于第16号染色体上的一个QTL(qPS16-1)与之前已报道的一个主效QTL(qPDH1)能够高度重叠,在这个区间内能够检测到8个基因,包含一个已知的功能基因Pdh1。另有10个QTL为本次实验鉴定的与大豆炸荚相关的新位点,LOD值介于2.55-4.24,表型解释率为1.33%-2.60%。在这之中,4个QTL位点(qPS01-1qPS03-2qPS05-1qPS07-1)能够在两个环境中被检测到,说明它们是与大豆炸荚相关的环境稳定的QTL新位点,结合GO富集分析、公共数据库基因差异表达谱和基因注释等方法,最终筛选到9个可能参与调控大豆炸荚性状的候选基因,但其具体功能仍待进一步验证。本研究的结果将有助于育种家们更好地了解大豆抗炸荚特性的遗传机制,为大豆抗炸荚分子育种提供理论依据。

Abstract  

Pod shattering is an important domesticated trait which can cause great economic loss of crop yield in cultivated soybean.  In this study, we utilized two recombinant inbred line populations (RILs, CY, Huachun 2×Wayao; GB, Guizao 1×B13) to identify quantitative trait loci (QTLs) associated with pod shattering in soybean across multiple environments.  A total of 14 QTLs for pod shattering were identified in the two RIL populations, which had LOD scores ranging from 2.64 to 44.33 with phenotypic variance explanation (PVE) ranging from 1.33 to 50.85%.  One QTL qPS16-1, located on chromosome 16, included a well-known functional gene Pod dehiscence 1 (Pdh1) that was reported previously.  Ten new putative QTLs were validated in two RIL populations, and their LOD scores were between 2.55 and 4.24, explaining 1.33 to 2.60% of the phenotypic variation.  Of which four novel QTLs (qPS01-1, qPS03-2, qPS05-1, and qPS07-1) could be detected in two environments where nine genes had specific changes in gene expression.  Although the nine genes may have significant effects on pod shattering of soybean, their detailed functions still need to be further explored in the future.  The results of this study will facilitate a better understanding of the genetic basis of the pod shattering-resistant trait and benefit soybean molecular breeding for improving pod shattering resistance


Keywords:   soybean        pod shattering        QTL mapping        candidate genes  
Received: 01 April 2021   Accepted: 25 June 2021
Fund: This work was supported by the Key-Areas Research and Development Program of Guangdong Province (2020B020220008), the China Agricultural Research System (CARS-04-PS09), the Guangdong Agricultural Research System (2020KJ136) and the Research Project of the State Key Laboratory of Agricultural and Biological Resources Protection and Utilization in Subtropics.
About author:  Correspondence NIAN Hai, E-mail: hnian@scau.edu.cn; CHENG Yan-bo, E-mail: ybcheng@scau.edu.cn * These authors contributed equally to this study.

Cite this article: 

JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. 2022. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.]. Journal of Integrative Agriculture, 21(11): 3169-3184.

Aguilar-Benitez D, Rubio J, Millan T, Gil J, Die J, Castro P. 2020. Genetic analysis reveals PDH1 as a candidate gene for control of pod dehiscence in chickpea. Molecular Breeding, 40, 1–12.
Asekova S, Kulkarni K P, Kim M, Kim J, Song J T, Shannon J G, Lee J. 2016. Novel quantitative trait loci for forage quality traits in a cross between PI 483463 and ‘Hutcheson’ in soybean. Crop Science, 56, 2600–2611.
Bailey M A, Mian M A R, Carter T E, Ashley D A, Boerma H R. 1997. Pod dehiscence of soybean: Identification of quantitative trait loci. Journal of Heredity, 88, 152–154.
Carter T E, Nelson R L, Sneller C H, Cui Z. 2004. Genetic diversity in soybean. Agronomy Monographs, 16, 303–416.
Cheng Y B, Ma Q B , Ren H L, Xia Q J , Song E L, Tan Z Y, Li S X, Zhang G Y, Nian H. 2017. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theoretical and Applied Genetics, 130, 1041–1051.
Christiansen L C, Dal D F, Ulvskov P, Borkhardt B. 2002. Examination of the dehiscence zone in soybean pods and isolation of a dehiscence-related endopolygalacturonase gene. Plant Cell and Environment, 25, 479–490.
Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 127, 659–675.
Doebley J F, Gaut B S, Smith B D. 2006. The molecular genetics of crop domestication. Cell, 127, 1309–1321.
Dong Y, Wang Y Z. 2015. Seed shattering: From models to crops. Frontiers in Plant Science, 6, 1–13.
Dong Y, Yang X, Liu J, Wang B H, Liu B L, Wang Y Z. 2014. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 5, 3352.
Eisenach C, Chen Z, Grefen C, Blatt M R. 2012. The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. The Plant Journal, 69, 241–251.
Fuller D Q. 2007. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Annals of Botany, 100, 903–924.
Funatsuki H, Hajika M, Hagihara S, Yamada T, Tanaka Y, Tsuji H, Ishimoto M, Fujino K. 2008. Confirmation of the location and the effects of a major QTL controlling pod dehiscence, qPDH1, in soybean. Breeding Science, 58, 63–69.
Funatsuki H, Hajika M, Yamada T, Suzuki M, Hagihara S, Tanaka Y, Fujita S, Ishimoto M, Fujino K. 2012. Mapping and use of QTLs controlling pod dehiscence in soybean. Breeding Science, 61, 554–558.
Funatsuki H, Ishimoto M, Tsuji H, Kawaguchi K, Hajika M, Fujino K. 2006. Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breeding, 125, 195–197.
Funatsuki H, Suzuki M, Hirose A, Inaba H, Yamada T, Hajika M, Komatsu K, Katayama T, Sayama T, Ishimoto M, Fujino K. 2014. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proceedings of the National Academy of Sciences the United States of America, 111, 17797–17802.
Gao M Q, Zhu H Y. 2013. Fine mapping of a major quantitative trait locus that regulates pod shattering in soybean. Molecular Breeding, 32, 485–491.
Gibbs B F, Zougman A, Masse R, Mulligan C. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37, 123–131.
Gong P T. 2012. QTL mapping and analysis of traits related to pod dehiscence in soybean. Legume Genomics and Genetics, 132, 2253–2272.
Han J N, Han D Z, Guo Y, Yan H R, Wei Z Y, Tian Y, Qiu L J. 2019. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theoretical and Applied Genetics, 132, 2253–2272.
He M, Lan M, Zhang B C, Zhou Y H, Wang Y Q, Zhu L, Yuan M, Fu Y. 2018. Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidopsis thaliana. Journal of Integrative Plant Biology, 60, 1051–1069.
Hu D Z, Kan G Z, Hu W, Li Y L, Hao D R, Li X, Yang H, Yang Z Y, He X H, Huang F, Yu D Y. 2019. Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-wide association analysis across multiple environments. Frontiers in Plant Science, 10, 1–14.
Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. 2020. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) merr.]. Journal of Agricultural and Food Chemistry, 68, 6448–6460.
Ji H, Chu S, Jiang W Z, Cho Y, Hahn J, Eun M, Mccouch S R, Koh H. 2006. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics, 173, 995–1005.
Jiang B Z, Li M, Cheng Y B, Cai Z D, Ma Q B, Jiang Z, Ma R R, Xia Q J, Zhang G Y, Nian H. 2019. Genetic mapping of powdery mildew resistance genes in soybean by high-throughput genome-wide sequencing. Theoretical and Applied Genetics, 132, 1833–1845.
Kadkol G P, Macmillan R H, Burrow R P, Halloran G M. 1984. Evaluation of Brassica genotypes for resistance to shatter. I. development of a laboratory test. Euphytica, 33, 63–73.
Kang S T, Kim H K, Baek I Y, Chung M G, Han W Y, Shin D C, Lee S. 2005. Genetic analysis of pod dehiscence in soybean. The Korean Journal of Crop Science, 50, 281–285.
Kang S T, Kwak M, Kim H K, Choung M G, Han W Y, Baek I Y, Kim M Y, Van K, Lee S H. 2009. Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.]. Euphytica, 166, 15–24.
Kang X, Cai J J, Chen Y X, Yan Y C, Yang S T, He R Q, Wang D, Zhu Y L. 2020. Pod-shattering characteristics differences between two groups of soybeans are associated with specific changes in gene expression. Functional & Integrative Genomics, 20, 201–210.
Kim M Y, Van K, Kang Y J, Kim K H, Lee S H. 2012. Tracing soybean domestication history: From nucleotide to genome. Breeding Science, 61, 445–452.
Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. 2006. An SNP caused loss of seed shattering during rice domestication. Science, 312, 1392–1396.
Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárský V. 2015. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiology, 168, 120–134.
Lee J S, Kim K R, Ha B K, Kang S T. 2017. Identification of SNPs tightly linked to the QTL for pod shattering in soybean. Molecular Breeding, 37, 54.
Li C B, Zhou A L, Sang T. 2006. Rice domestication by reducing shattering. Science, 311, 1936–1939.
Li J H, Wen S Z, Fan C F, Zhang M H, Tian S, Kang W J, Zhao W X, Bi C, Wang Q Y, Lu S, Guo W L, Ni Z F, Xie C J, Sun Q X, You M S. 2020. Characterization of a major quantitative trait locus on the short arm of chromosome 4B for spike number per unit area in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 133, 2259–2269.
Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. 2007. QTL mapping of domestication-related traits in soybean (Glycine max). Annals of Botany, 100, 1027–1038.
Liu G, Jia L J, Lu L H, Qin D D, Zhang J P, Guan P F, Ni Z F, Yao Y Y, Sun Q X, Peng H R. 2014. Mapping QTLs of yield-related traits using RIL population derived from common wheat and tibetan semi-wild wheat. Theoretical and Applied Genetics, 127, 2415–2432.
Mauricio R. 2001. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nature Reviews Genetics, 2, 370–381.
Miranda C, Culp C, Škrabišová M, Joshi T, Belzile F, Grant D M, Bilyeu K. 2019. Molecular tools for detecting Pdh1 can improve soybean breeding efficiency by reducing yield losses due to pod shatter. Molecular Breeding, 39, 1–9.
Murgia M L, Attene G, Rodriguez M, Bitocchi E, Bellucci E, Fois D, Nanni L, Gioia T, Albani D, Papa R. 2017. A comprehensive phenotypic investigation of the “Pod-Shattering Syndrome” in common bean. Frontiers in Plant Science, 8, 251.
Ouellette L A, Reid R W, Blanchard S G, Brouwer C R. 2018. LinkageMapView-rendering high-resolution linkage and QTL maps. Bioinformatics (Oxford, England), 34, 306–307.
Rajani S, Sundaresan V. 2001. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology, 11, 1914–1922.
Sab S, Lokesha R, Mannur D M, Somasekhar, Jadhav K, Mallikarjuna B P, Laxuman C, Yeri S, Valluri V, Bajaj P, Chitikineni A, Vemula A, Rathore A, Varshney R K, Shankergoud I, Thudi M. 2020. Genome-wide SNP discovery and mapping QTLs for seed iron and zinc concentrations in chickpea (Cicer arietinum L.). Frontiers in Nutrition, 7, 1–9.
Sanjukta S, Rai A K. 2016. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science and Technology, 50, 1–10.
Seo J H, Kang B K, Dhungana S K, Oh J H, Choi M S, Park J H, Shin S O, Kim H S, Baek I Y, Sung J S, Jung C S, Kim K S, Jun T H. 2020. QTL mapping and candidate gene analysis for pod shattering tolerance in soybean (Glycine max). Plants, 9, 1163. 
Severin A J, Woody J L, Bolon Y, Joseph B, Diers B W, Farmer A D, Muehlbauer G J, Nelson R T, Grant D, Specht J E, Graham M A, Cannon S B, May G D, Vance C P, Shoemaker R C. 2010. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biology, 10, 160.
Simons K, Fellers J P, Trick H N, Zhang Z, Tai Y, Gill B S, Faris J D. 2006. Molecular characterization of the major wheat domestication gene Q. Genetics, 172, 547–555.
Suanum W, Somta P, Kongjaimun A, Yimram T, Kaga A, Tomooka N, Takahashi Y, Srinives P. 2016. Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Molecular Breeding, 36, 1–11.
Suzuki M, Fujino K, Funatsuki H. 2009. A major soybean QTL, qPDH1, controls pod dehiscence without marked morphological change. Plant Production Science, 12, 217–223.
Suzuki M, Fujino K, Nakamoto Y, Ishimoto M, Funatsuki H. 2010. Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Molecular Breeding, 25, 407–418.
Tucker M, Sexton R, Campillo E, Lewis L. 1989. Bean abscission cellulase: Characterization of a cDNA clone and regulation of gene expression by ethylene and auxin. Plant Physiology, 88, 1257–1262.
Vittori V D, Gioia T, Rodriguez M, Bellucci E, Bitocchi E, Nanni L, Attene G, Rau D, Papa R. 2019. Convergent evolution of the seed shattering trait. Genes, 10, 1–16.
Wang R, Ripley V L, Rakow G. 2007. Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breeding, 126, 588–595.
Xu M Y, Liu Z X, Qin H T, Qi H D, Wang Z Y, Mao X R, Xin D W, Hu Z B, Wu X X, Jiang H W, Qi Z M, Chen Q S. 2018. Identification of novel soybean oil content-related genes using QTL-based collinearity analysis from the collective soybean genome. Journal of Integrative Agriculture, 17, 1727–1735.
Yamada T, Funatsuki H, Hagihara S, Fujita S, Tanaka Y, Tsuji H, Ishimoto M, Fujino K, Hajika M. 2009. A major QTL, qPDH1, is commonly involved in shattering resistance of soybean cultivars. Breeding Science, 59, 435–440.
Yang H Y, Wang W B, He Q Y, Xiang S H, Tian D, Zhao T J, Gai J Y. 2019. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theoretical and Applied Genetics, 132, 2793–2807.
Yao Y J, You Q B, Duan G Z, Ren J J, Chu S S, Zhao J Q, Li X, Zhou X A, Jiao Y Q. 2020. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biology, 20, 51–13.
Zeng Z B. 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America, 90, 10972–10976.
Zhang L X, Boahen S. 2010. Evaluation of critical shattering time of early-maturity soybeans under early soybean production system. Agriculture and Biology Journal of North America, 1, 440–447.
Zhang X X, Guan Z R, Li Z L, Liu P, Ma L L, Zhang Y C, Pan L, He S J, Zhang Y L, Li P, Ge F, Zou C Y, He Y C, Gao S B, Pan G T, Shen Y O. 2020. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theoretical and Applied Genetics, 133, 2881–2895.
Zhou Y, Lu D F, Li C Y, Luo J H, Zhu B F, Zhu J J, Shangguan Y Y, Wang Z X, Sang T, Zhou B. 2012. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION 1. The Plant Cell, 24, 1034–1048.
Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, et al. 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 4, 408–414.
Zhu Q, Escamilla D M, Wu X B, Song Q J, Li S, Rosso M L, Lord N, Xie F T, Zhang B. 2020. Identification and validation of major QTLs associated with low seed coat deficiency of natto soybean seeds (Glycine max L.). Theoretical and Applied Genetics, 133, 3165–3176.
Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk K J. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE, 3, e1994.


[1] Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1910-1928.

[2] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[3] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

[4] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
[5] HUANG Feng, LI Xuan-shuang, DU Xiao-yu, LI Shun-cheng, LI Nan-nan, LÜ Yong-jun, ZOU Shao-kui, ZHANG Qian, WANG Li-na, NI Zhong-fu, HAN Yu-lin, XING Jie-wen. SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2949-2960.
[6] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[7] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[8] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
[9] HUI Fang, XIE Zi-wen, LI Hai-gang, GUO Yan, LI Bao-guo, LIU Yun-ling, MA Yun-tao. Image-based root phenotyping for field-grown crops: An example under maize/soybean intercropping[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1606-1619.
[10] Muhammad Ahsan ASGHAR, JIANG Heng-ke, SHUI Zhao-wei, CAO Xi-yu, HUANG Xi-yu, Shakeel IMRAN, Bushra AHMAD, ZHANG Hao, YANG Yue-ning, SHANG Jing, YANG Hui, YU Liang, LIU Chun-yan, YANG Wen-yu, SUN Xin, DU Jun-bo. Interactive effect of shade and PEG-induced osmotic stress on physiological responses of soybean seedlings[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2382-2394.
[11] DING Xiao-yu, XU Jin-song, HUANG He, QIAO Xing, SHEN Ming-zhen, CHENG Yong, ZHANG Xue-kun. Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.)[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1974-1983.
[12] XU Zhong, SUN Hao, ZHANG Zhe, Zhao Qing-bo, Babatunde Shittu Olasege, Li Qiu-meng, Yue Yang, Ma Pei-pei, Zhang Xiang-zhe, Wang Qi-shan, Pan Yu-chun .
Genome-wide detection of selective signatures in a Jinhua pig population
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1314-1322.
[13] LUO Jiang-tao, ZHENG Jian-min, WAN Hong-shen, YANG Wu-yun, LI Shi-zhao, PU Zong-jun . Identification of QTL for adult plant resistance to stripe rust in bread wheat line C33[J]. >Journal of Integrative Agriculture, 2020, 19(3): 624-631.
[14] Aejaz Ahmad DAR, Susheel SHARMA, Reetika MAHAJAN, Muntazir MUSHTAQ, Ankila SALATHIA, Shahid AHAMAD, Jag Paul SHARMA. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[15] XIA Ning, YAN Wen-bing, WANG Xiao-qi, SHAO Yu-peng, YANG Ming-ming, WANG Zhi-kun, ZHAN Yu-hang, TENG Wei-li, HAN Ying-peng, SHI Yan-guo. Genetic dissection of hexanol content in soybean seed through genome-wide association analysis[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1222-1229.
No Suggested Reading articles found!