Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (8): 2305-2318    DOI: 10.1016/S2095-3119(21)63876-5
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials

CHAO Kai-xiang1, 2*, WU Cai-juan1*, LI Juan1, WANG Wen-li1, WANG Bao-tong1, LI Qiang1

1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, P.R.China

2 College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

为鉴定和利用武都白茧的抗条锈病基因,本研究将武都白茧与高感条锈病品种铭贤169杂交,分别于2015年和2016年在陕西杨凌和甘肃天水四个环境中对武都白茧、铭贤169和以及铭贤169/武都白茧杂交F2:3代家系进行成株期抗条锈病测试。田间多年多点鉴定结果表明,武都白茧表现稳定的成株期抗条锈性,铭贤169/武都白茧F2:3代在2015年杨凌、2016年杨凌、2015年天水和2016年天水四个环境下的相对病害曲线下面积(rAUDPC)均呈连续分布,表明武都白茧对条锈病的成株期抗性由多个QTL控制。利用集群分离分析法结合小麦660K SNP芯片、KASP和SSR标记鉴定与抗性位点连锁的多态性标记,运用完备区间作图法(BIP)和多环境表型鉴定数据(MET)两种QTL技术方法,检测到两个稳定的QTLs:QYrwdbj.nwafu-5AQYrwdbj.nwafu-2B.1 。其中QYrwdbj.nwafu-5A位于小麦染色体5AS的缺失系5AS1-0.40-0.75和5AS3-0.75-0.98相邻的区域,解释15.02%-40.26%的表型变异;QYrwdbj.nwafu-2B.1位于小麦染色体2BS的缺失系C-2BS1-0.53上,解释9.54%-10.40%的表型变异。通过分子检测、抗病基因染色体定位和上位性分析表明,QYrwdbj.nwafu-5A很可能是一个需要与其它位点结合互作才能发挥抗条锈作用的新QTL。本研究将为进一步克隆武都白茧主效QTL,以及利用武都白茧主效QTL与其他有效抗条锈病基因或者QTL结合,培育持久抗条锈病品种提供科学依据。本研究的创新点是考虑环境对QTL的加性效应,从而提供QTL位置和效应方面更为全面遗传分析


Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases on wheat worldwide.  Wudubaijian, a wheat landrace released from Gansu Province in China since 1950, exhibits adult-plant resistance to stripe rust for several decades.  To elucidate the genetic basis of stripe rust resistance, Wudubaijian was crossed with the high susceptible cultivar Mingxian 169, and stripe rust tests of both parents and the F2:3 lines were conducted in four environments of Yangling and Tianshui in 2015 and 2016, respectively.  The relative area under disease progress curve (rAUDPC) of Mingxian 169/Wudubaijian F2:3 lines showed that the resistance of Wudubaijian was controlled by quantitative trait loci (QTL).  Combined with phenotypic data and molecular markers, two stable QTLs were identified in Wudubaijian.  QYrwdbj.nwafu-5A with the phenotypic variance of 15.02–40.26% was located between 5AS1–0.40–0.75 and 5AS3–0.75–0.98 of chromosome 5AS, and QYrwdbj.nwafu-2B.1 with the phenotypic variance of 9.54–10.40% was located in the bin C-2BS1–0.53 of chromosome 2BS.  Through the location of flanking markers and epistasis analysis, QYrwdbj.nwafu-5A may be a new major QTL that can be used in conjunction with other stripe rust resistance genes (QTLs).

Keywords:  Triticum aestivum        Puccinia striiformis f. sp. tritici        adult-plant resistance        QTL mapping  
Received: 21 August 2021   Accepted: 17 November 2021
Fund: This research was supported by the Science and Technology Partnership Program, Ministry of Science and Technology of China (KY202002018), the National Key R&D Program of China (2016YFD0300705 and 2018YFD0200403), the Natural Science Basic Research Plan in Shaanxi Province of China (2019JZ-17), and the Open Project Program of State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, China (CSBAA2019007).
About author:  Correspondence LI Qiang, E-mail:; WANG Bao-tong, E-mail: * These authors contributed equally to this study.

Cite this article: 

CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. 2022. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials. Journal of Integrative Agriculture, 21(8): 2305-2318.

Bariana H S, McIntosh R A. 1993. Cytogenetic studies in wheat XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 36, 476–482.
Brown J K M. 2015. Durable resistance of crops to disease: A darwinian perspective. Annual Review of Phytopathology, 53, 513–539.
Carter A H, Chen X M, Garland-Campbell K, Kidwell K K. 2009. Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp. tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise’. Theoretical and Applied Genetics, 119, 1119–1128.
Chen J L, Chu C G, Souza E J, Guttieri M J, Chen X M, Xu S, Hole D, Zemetra R. 2012. Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Molecular Breeding, 29, 791–800.
Chen W Q, Wu L R, Liu T G, Xu S C, Jin S L, Peng Y L, Wang B T. 2009. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Disease, 93, 1093–1101.
Chen X M. 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Plant Pathology, 27, 314–337.
Chen X M, Line R F. 1995. Gene action in wheat cultivars for durable, high-temperature, adult-plant resistance and interactions with race-specific, seedling resistance to Puccinia striiformis. Phytopathology, 85, 567–572.
Chen X M, Line R F, Leung H. 1998. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theoretical and Applied Genetics, 97, 345–355.
Cheng Y K. 2019. Evaluation analysis and molecular mapping of resistance to stripe rust and yield-related traits in the middle and lower reaches of the Yangtze River wheat landraces. Ph D thesis, Sichuan Agricultural University, China. (in Chinese)
Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J. 2009. Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology, 99, 968–973.
Ellis J G, Lagudah E S, Spielmeyer W, Dodds P N. 2014. The past, present and future of breeding rust resistant wheat. Frontiers in Plant Science, 5, 641.
Forrest K, Pujol V, Bulli P, Pumphrey M, Wellings C, Herrera-Foessel S, Huerta-Espino J, Singh R, Lagudah E, Hayden M, Spielmeyer W. 2014. Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Molecular Breeding, 34, 2109–2118.
Fu D L, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X M, Sela H, Fahima T, Dubcovsky J. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 323, 1357–1360.
Guo Q, Zhang Z J, Xu Y B, Li G H, Feng J, Zhou Y. 2008. Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp. tritici in wheat cultivars. Phytopathology, 98, 803–809.
Han D J, Wang Q L, Chen X M, Zeng Q D, Wu J H, Xue W B, Zhan G M, Huang L L, Kang Z S. 2015. Emerging Yr26-virulent races of Puccinia striiformis f.sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Disease, 99, 754–760.
He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. 2011. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Scientia Agricultura Sinica, 44, 2193–2215. (in Chinese)
He C, Holme J, Anthony J. 2014. SNP genotyping: The KASP assay. Methods in Molecular Biology, 1145, 75–86.
Hu X P, Wang B T, Kang Z S. 2014. Research progress on virulence variation of Puccinia striiformis f. sp. tritici in China. Journal of Triticeae Crops, 34, 709–716. (in Chinese)
Jia Q Z, Cao S Q, Huang J, Zhang B, Sun Z Y, Luo H S, Wang X M, Jin S L. 2018. Monitoring the variation of physiological races of Puccinia striiformis f. sp. tritici in Gansu Province, China during 2013–2016. Plant Protection, 44, 162–167. (in Chinese)
Johnson R. 1978. Practical breeding for durable resistance to rust diseases in self-pollinating cereals. Euphytica, 27, 529–540.
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. 2015. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 48, 3439–3453. (in Chinese)
Kosambi D D. 1943. The estimation of map distances from recombination values. Annals of Human Genetics, 12, 172–175.
Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L, Keller B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–1363.
Lan C X, Liang S S, Zhou X C, Zhou G, Lu Q L, Xia X C, He Z H. 2010. Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology, 100, 313–318.
Li J B, Dundas L, Dong C M, Li G R, Trethowan R, Yang Z J, Hoxha S, Zhang P. 2020. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theoretical and Applied Genetics, 133, 1095–1107.
Li Q, Li G B, Yue W Y, Du J Y, Yang L J, Kang Z S, Jing J X, Wang B T. 2016. Pathogenicity changes of wheat stripe rust fungus and disease resistance of wheat cultivars (lines) in Shaanxi province during 2002–2014. Acta Phytopathology Sinica, 46, 374–383. (in Chinese)
Li S S, Wang J K, Zhang L Y. 2015. Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS ONE, 10, e0132414.
Luo P G, Hu X Y, Ren Z L, Zhang H Y, Shu K, Yang Z J. 2008. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome, 51, 922–927.
Luo P G, Ren Z L, Zhang H Q, Zhang H Y. 2005. Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology, 95, 1266–1270.
Maccaferri M, Zhang J L, Bulli P, Abate Z, Chao S M, Cantu D, Bossolini E, Chen X M, Pumphrey M, Dubcovsky J. 2015. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). Genes Genomes Genetics, 5, 449–465.
Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard A L, Sourdille P, Dedryver F. 2005. Genetic analysis of durable resistance to yellow rust in bread wheat. Theoretical and Applied Genetics, 110, 1401–1409.
McDonald D B, Mcintosh R A, Wellings C R, Singh R P, Nelson J C. 2004. Cytogenetical studies in wheat XIX. Location and linkage studies on gene Yr27 for resistance to stripe (yellow) rust. Euphytica, 136, 239–248.
Meng L, Li H H, Zhang L Y, Wang J K. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269–283.
Mesfin G, Bariana H, Wong D, Hayden M, Bansal U. 2019. Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Disease, 103, 1166–1171.
Moore J W, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X Y, Spielmeyer W, Talbot M, Bariana H, Patrick J W, Dodds P, Singh R, Lagudah E. 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 47, 1494–1498.
Niks R E, Alemu S K, Marcel T C, Heyzen S V. 2015. Mapping genes in barley for resistance to Puccinia coronata from couch grass and to P. striiformis from brome, wheat and barley. Euphytica, 206, 487–499.
van Ooijen J W. 2006. JoinMap® 4.0, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma B V, Wageningen, Netherlands.
Pakeerathan K, Bariana H, Qureshi N, Wong D, Hayden M, Bansal U. 2019. Identification of a new source of stripe rust resistance Yr82 in wheat. Theoretical and Applied Genetics, 132, 3169–3176.
Prins R, PretoriusZ A, Bender C M, Lehmensiek A. 2011. QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Molecular Breeding, 27, 259–270.
Qayoum A, Line R F. 1985. High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology, 75, 1121–1125.
Quan W, Hou G L, Chen J, Du Z Y, Lin F, Guo Y, Liu S, Zhang Z J. 2013. Mapping of QTL lengthening the latent period of Puccinia striiformis in winter wheat at the tillering growth stage. European Journal of Plant Pathology, 136, 715–727.
Ramirez-Gonzalez R H, Uauy C, Caccamo M. 2015. PolyMarker: A fast polyploid primer design pipeline. Bioinformatics, 31, 2038–2039.
Roelfs A P, Singh R P, Saari E E. 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. CIMMYT, Mexico. pp. 2–18.
Rosewarne G M, Herrera-Foessel S A, Singh R P, Huerta‑Espino J, Lan C X, He Z H. 2013. Quantitative trait loci of stripe rust resistance in wheat. Theoretical and Applied Genetics, 126, 2427–2449.
Singh R P, Huerto-Espino J, William H M. 2005. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture & Forestry, 29, 121–127.
Singh R P, William H M, Huerta-Espino J. 2003. Identification and mapping of gene Yr31 for resistance to stripe rust in Triticum aestivum cultivar Pastor. Proceedings of the 10th International Wheat Genetics Symposium, 1, 411–413.
Stein N, Herren G, Keller B. 2001. A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breeding, 120, 354–356.
Vazquez M D, Peterson C J, Riera-Lizarazu O, Chen X M, Heesacker A, Ammar K, Crossa J, Mundt C C. 2012. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar ‘Stephens’ in multi-environment trials. Theoretical and Applied Genetics, 124, 1–11.
Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.
Wan A M, Niu Y C, Xu S C, Wu L R. 2000. Characteristics of cultivars with durable resistance to stripe rust and its potential in China. Acta Agronomica Sinica, 26, 751–755. (in Chinese)
Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. 2004. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Disease, 88, 896–904.
Wang J K. 2009. Inclusive composite interval mapping of quantitative trait genes. Acta Agronomica Sinica, 35, 239–245. (in Chinese)
Wang J K, Li H H, Zhang L Y. 2014. Gene Mapping and Breeding Design. Science Publishers, Beijing. pp. 128–159. (in Chinese)
Yan Q J, Shang X W, Yin X G, Wang H J. 2006. Characteristics and identification indexes of durable resistance wheat cultivars to stripe rust. Journal of Gansu Agricultural University, 6, 24–28. (in Chinese)
Zhang Y H. 2005. Studies on the characteristics of resistance and biochemical mechanism of durable resistance wheat cultivars to stripe rust. MSc thesis, Gansu Agricultural University, China. (in Chinese)

[1] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[2] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[3] LUO Jiang-tao, ZHENG Jian-min, WAN Hong-shen, YANG Wu-yun, LI Shi-zhao, PU Zong-jun . Identification of QTL for adult plant resistance to stripe rust in bread wheat line C33[J]. >Journal of Integrative Agriculture, 2020, 19(3): 624-631.
[4] Aejaz Ahmad DAR, Susheel SHARMA, Reetika MAHAJAN, Muntazir MUSHTAQ, Ankila SALATHIA, Shahid AHAMAD, Jag Paul SHARMA. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[5] WANG Shi-ming, CUI Guo-qing, WANG Hui, MA Fu-ying, XIA Sai-sai, LI Yun-feng, YANG Zheng-lin, LING Ying-hua, ZHANG Chang-wei, HE Guang-hua, ZHAO Fang-ming. Identification and QTL mapping of Z550, a rice backcrossed inbred line with increased grains per panicle[J]. >Journal of Integrative Agriculture, 2019, 18(3): 526-531.
[6] PENG Zhen, WANG Pei, TANG Die, SHANG Yi, LI Can-hui, HUANG San-wen, ZHANG Chun-zhi. Inheritance of steroidal glycoalkaloids in potato tuber flesh[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2255-2263.
[7] HU Da-wei, SHENG Zhong-hua, LI Qian-long, CHEN Wei, WEI Xiang-jin, XIE Li-hong, JIAO Gui-ai, SHAO Gao-neng, WANG Jian-long, TANG Shao-qing, HU Pei-song. Identification of QTLs associated with cadmium concentration in rice grains[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1563-1573.
[8] CHEN Dan, WU Xiao-yang, WU Kuo, ZHANG Jin-peng, LIU Wei-hua, YANG Xin-ming, LI Xiu-quan, LU Yu-qing, LI Li-hui. Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2386-2401.
[9] WANG Hai, HE Yan, WANG Shou-cai. QTL mapping of general combining abilities of four traits in maize using a high-density genetic map[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1700-1707.
[10] Md Habibur Rahman, ZHANG Ying-xin, SUN Lian-ping, ZHANG Ke-qin, Md Sazzadur Rahman, WU Wei-xun, ZHAN Xiao-deng, CAO Li-yong, CHENG Shi-hua . Genetic mapping of quantitative trait loci for the stigma exsertion rate in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1423-1431.
[11] YAO Xiao-yun, WANG Jia-yu, LIU Jin, WANG Wei, YANG Sheng-long, ZHANG Yu, XU Zheng-jin. Comparison and analysis of QTLs for grain and hull thickness related traits in two recombinant inbred line (RIL) populations in rice (Oryza sativa L.)[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2437-2450.
No Suggested Reading articles found!