Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (16): 3327-3344.doi: 10.3864/j.issn.0578-1752.2025.16.015

• PLANT PROTECTION • Previous Articles     Next Articles

Mechanism of Tobacco Resistance to Bacterial Wilt Induced by Magnesium Oxide Nanoparticles

CHEN JuanNi1(), CHEN PinLu1, LI Yu2, XIE MengXiao1, LI XinBei2,*(), DING Wei1,*()   

  1. 1 College of Plant Protection, Southwest University, Chongqing 400715
    2 Henan Branch of China National Tobacco Corporation, Zhengzhou 450018
  • Received:2025-05-11 Accepted:2025-06-12 Online:2025-08-11 Published:2025-08-11
  • Contact: LI XinBei, DING Wei

Abstract:

【Objective】The objective of this study is to explore the effect and mechanism of magnesium oxide nanoparticles (MgO NPs) in inducing tobacco resistance to bacterial wilt, and by integrating the aboveground and underground synergistic response mechanism of plants, it will provide a new research perspective for revealing the molecular mechanism of nanomaterials inducing systemic resistance in plants.【Method】The physiological and biochemical defense response mechanisms of the aboveground part and the changes of the rhizosphere microecology of the underground part of diseased tobacco plants after MgO NPs treatment were evaluated by root irrigation pretreatment, combined with methods such as the determination of plant defense substances, qRT-PCR and high-throughput sequencing. 【Result】 Pretreatment with 300 μg·mL-1 MgO NPs achieved optimal control efficacy against tobacco bacterial wilt, showing a relative control efficacy of 50.74% at 16 days post-inoculation. Compared with the water control, MgO NPs pretreatment significantly enhanced antioxidant enzyme activities in tobacco plants. The activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and polyphenol oxidase (PPO) were increased by 63.9%, 61.3%, 72.8%, and 66.4%, respectively. The contents of proline and soluble sugar in leaves pretreated with 300 μg·mL-1 MgO NPs were significantly increased by 319.3% and 131.0% compared with the control, while malondialdehyde (MDA), hydrogen peroxide, and superoxide anion levels were significantly decreased compared with the control. Concurrently, MgO NPs pretreatment significantly enhanced the expression level of tobacco resistance genes and significantly changed the richness and diversity of microbial community in tobacco rhizosphere soil. Compared with the control group, beneficial bacteria and fungi such as Bacillus, Streptomyces, Humicola, Mortierella and Chaetomium in tobacco rhizosphere soil were significantly enriched after pretreatment with MgO NPs. The relative abundance of pathogens such as Ralstonia, Streptococcus and Fusarium decreased significantly. In field trials, the drench application of 300 μg·mL-1 MgO NPs demonstrated a relative control efficacy of 53.67% against tobacco bacterial wilt.【Conclusion】MgO NPs can effectively control tobacco bacterial wilt while improving the rhizosphere microecology of tobacco plants, exhibiting potential for development as a novel nano-antibacterial agent to enhance tobacco’s defense against pathogen invasion.

Key words: magnesium oxide nanoparticles, tobacco bacterial wilt, induced resistance, action mechanism, rhizosphere microorganism

Table 1

The sequence of primers"

基因Gene 引物序列Primer sequence (5′-3′)
NtNCED3 F: AATTGTGGTGATTGGTTC
R: ATTGCTCTTCTTGTTGATT
NtPR1b F: AACCCATCCATACTATTCCTTG
R: GCCGCTAACCTATTGTCCC
NtPR1a/c F: AACCTTTGACCTGGGACGAC
R: GCACATCCAACACGAACCGA
NtCAT1 F: CAACTTCCTGCTAATGCTCCAA
R: TGCCTGTCTGGTGTGAATGA
NtEF F: GAAAGACTGCTTATTGACTCCACC
R: CCACACGACCAACAGGGACA

Fig. 1

The characteristic of MgO NPs"

Fig. 2

Control efficacy on tobacco bacterial wilt after irrigation with different concentrations of MgO NPs in pot experiment"

Fig. 3

Effect of MgO NPs on antioxidant enzyme activity in tobacco leaves"

Fig. 4

Effects of MgO NPs on contents of MDA (A), proline (B) and soluble sugar (C) in tobacco leaves"

Fig. 5

H2O2 (A) and $\mathrm{O}_2^{\bar{.}}$ (B) content in tobacco leaves after treated with MgO NPs and NBT staining (C) of tobacco leaves"

Fig. 6

Expression levels of tobacco resistance genes induced by MgO NPs"

Fig. 7

Venn diagram of OTU classification of bacteria (A) and fungi (B)"

Table 2

Analysis of richness and α diversity of bacteria and fungi in tobacco rhizosphere soil under different treatments"

分类
Category
处理
Treatment
Sobs指数
Sobs index
Shannon指数
Shannon index
Ace指数
Ace index
Chao指数
Chao index
Coverage指数
Coverage index
细菌
Bacteria
清水对照CK 2084.3a 2.3247a 2543.6a 2562.3a 0.9786a
MgO NPs 2178.3a 5.9146b 2659.7a 2636.3a 0.9779a
真菌
Fungi
清水对照CK 433a 3.4502a 157.6a 147.7a 0.9992a
MgO NPs 290a 1.8386b 417.1b 516.8b 0.9993a

Fig. 8

Principal coordinate analysis of bacterial (A) and fungal (B) communities in tobacco rhizosphere soil"

Fig. 9

The proportion of bacterial community (A) and fungal community (B) in tobacco rhizosphere soil at phylum level"

Fig. 10

Cluster heatmap of bacterial community (A) and fungal community (B) in tobacco rhizosphere soil at genus level"

Fig. 11

Control efficacy of MgO NPs on tobacco bacterial wilt in field condition after irrigation application"

[1]
毕开涛, 韩伟, 陈佛源, 覃锋, 易蔓, 李吉秀, 任甜甜, 杜霞, 李石力. 基于根际生物屏障构建的烟草青枯病绿色防控技术的应用研究. 植物医学, 2024, 3(1): 22-32.
BI K T, HAN W, CHEN F Y, QIN F, YI M, LI J X, REN T T, DU X, LI S L. Green prevention and control technology for tobacco bacterial wilt based on rhizosphere biological barrier. Plant Health and Medicine, 2024, 3(1): 22-32. (in Chinese)
[2]
HAYWARD A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 1991, 29: 65-87.
[3]
JIANG G F, WEI Z, XU J, CHEN H L, ZHANG Y, SHE X M, MACHO A P, DING W, LIAO B S. Bacterial wilt in China: History, current status, and future perspectives. Frontiers in Plant Science, 2017, 8: 1549.

doi: 10.3389/fpls.2017.01549 pmid: 28955350
[4]
李吉秀, 朱晓伟, 王叶, 王垚, 杨亮, 徐小洪. 0.53%瑞香素乳油诱导烟草抗青枯病的效果. 植物医学, 2023, 2(5): 33-40.
LI J X, ZHU X W, WANG Y, WANG Y, YANG L, XU X H. The effects of 0.53% daphnetin EC on inducing tobacco resistance to tobacco bacterial wilt. Plant Health and Medicine, 2023, 2(5): 33-40. (in Chinese)
[5]
韩松庭, 丁伟. 烟草青枯病的化学防治研究进展. 植物医生, 2019, 32(5): 20-25.
HAN S T, DING W. Advances in chemical control of tobacco bacterial wilt. Plant Doctor, 2019, 32(5): 20-25. (in Chinese)
[6]
VAILLEAU F, GENIN S. Ralstonia solanacearum: An arsenal of virulence strategies and prospects for resistance. Annual Review of Phytopathology, 2023, 61: 25-47.
[7]
MONDS R D, O’TOOLE G A. The developmental model of microbial biofilms: Ten years of a paradigm up for review. Trends in Microbiology, 2009, 17(2): 73-87.

doi: 10.1016/j.tim.2008.11.001 pmid: 19162483
[8]
陈娟妮, 蔡璘, 李石力, 杨亮, 丁伟. 纳米技术在植物病害防控中应用的研究进展. 植物保护学报, 2019, 46(1): 142-150.
CHEN J N, CAI L, LI S L, YANG L, DING W. Progress in application of nanotechnology on plant diseases management in agriculture. Journal of Plant Protection, 2019, 46(1): 142-150. (in Chinese)
[9]
NEJATI M, ROSTAMI M, MIRZAEI H, RAHIMI-NASRABADI M, VOSOUGHIFAR M, NASAB A S, GANJALI M R. Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications, 2022, 136: 109107.
[10]
PARIZI M A, MORADPOUR Y, ROOSTAEI A, KHANI M, NEGAHDARI M, RAHIMI G. Evaluation of the antifungal effect of magnesium oxide nanoparticles on Fusarium oxysporum f. sp. lycopersici, pathogenic agent of tomato. European Journal of Experimental Biology, 2014, 4(3): 151-156.
[11]
ALI S, ULHASSAN Z, SHAHBAZ H, KALEEM Z, YOUSAF M A, ALI S, SHETEIWY M S, WASEEM M, ALI S, ZHOU W J. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses. Environmental Science: Nano, 2024, 11(8): 3250-3267.
[12]
CAI L, LIU M H, LIU Z W, YANG H K, SUN X C, CHEN J N, XIANG S Y, DING W. MgONPs can boost plant growth: Evidence from increased seedling growth, morpho-physiological activities, and Mg uptake in tobacco (Nicotiana tabacum L.). Molecules, 2018, 23(12): 3375.
[13]
FAIZ S, YASIN N A, KHAN W U, SHAH A A, AKRAM W, AHMAD A, ALI A, NAVEED N H, RIAZ L. Role of magnesium oxide nanoparticles in the mitigation of lead-induced stress in Daucus carota: Modulation in polyamines and antioxidant enzymes. International Journal of Phytoremediation, 2022, 24(4): 364-372.
[14]
ABDALLAH Y, HUSSIEN M, OMAR M O A, ELASHMONY R M S, ALKHALIFAH D H M, HOZZEIN W N. Mung bean (Vigna radiata) treated with magnesium nanoparticles and its impact on soilborne Fusarium solani and Fusarium oxysporum in clay soil. Plants, 2022, 11(11): 1514.
[15]
CAI L, CHEN J N, LIU Z W, WANG H C, YANG H K, DING W. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in Microbiology, 2018, 9: 790.
[16]
AHMED T, NOMAN M, SHAHID M, SHAHID M S, LI B. Antibacterial potential of green magnesium oxide nanoparticles against rice pathogen Acidovorax oryzae. Materials Letters, 2021, 282: 128839.
[17]
CHEN J N, WU L T, LU M, LU S S, LI Z Y, DING W. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Frontiers in Microbiology, 2020, 11: 365.

doi: 10.3389/fmicb.2020.00365 pmid: 32226420
[18]
LIAO Y Y, STRAYER-SCHERER A L, WHITE J, MUKHERJEE A, DE LA TORRE-ROCHE R, RITCHIE L, COLEE J, VALLAD G E, FREEMAN J H, JONES J B, PARET M L. Nano-magnesium oxide: A novel bactericide against copper-tolerant Xanthomonas perforans causing tomato bacterial spot. Phytopathology, 2019, 109(1): 52-62.
[19]
王吉. 纳米氧化镁对番茄生长的影响及在酸性土壤中的迁移[D]. 武汉: 华中农业大学, 2023.
WANG J. Effects of nano-magnesium oxide on tomato growth and its migration in acidic soils[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese)
[20]
IMADA K, SAKAI S, KAJIHARA H, TANAKA S, ITO S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 2016, 65(4): 551-560.
[21]
HUSSAIN M, SHAKOOR N, ADEEL M, AHMAD M A, ZHOU H C, ZHANG Z Y, XU M, RUI Y K, WHITE J C. Nano-enabled plant microbiome engineering for disease resistance. Nano Today, 2023, 48: 101752.
[22]
ANDREADELLI A, PETRAKIS S, TSOUREKI A, TSIOLAS G, MICHAILIDOU S, BALTZOPOULOU P, VAN MERKESTEIN R, HODGSON P, SCEATS M, KARAGIANNAKIS G, MAKRIS A M. Effects of magnesium oxide and magnesium hydroxide microparticle foliar treatment on tomato PR gene expression and leaf microbiome. Microorganisms, 2021, 9(6): 1217.
[23]
GU Y A, BANERJEE S, DINI-ANDREOTE F, XU Y C, SHEN Q R, JOUSSET A, WEI Z. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. The ISME Journal, 2022, 16(10): 2448-2456.
[24]
JIANG H B, LV L Q, AHMED T, JIN S M, SHAHID M, NOMAN M, OSMAN H H, WANG Y L, SUN G C, LI X Q, LI B. Effect of the nanoparticle exposures on the tomato bacterial wilt disease control by modulating the rhizosphere bacterial community. International Journal of Molecular Sciences, 2022, 23(1): 414.
[25]
TARAN N Y, GONCHAR O M, LOPATKO K G, BATSMANOVA L M, PATYKA M V, VOLKOGON M V. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Research Letters, 2014, 9(1): 289.
[26]
XU J B, LUO X S, WANG Y L, FENG Y Z. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environmental Science and Pollution Research, 2018, 25(6): 6026-6035.
[27]
KHODAKOVSKAYA M V, KIM B S, KIM J N, ALIMOHAMMADI M, DERVISHI E, MUSTAFA T, CERNIGLA C E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 2013, 9(1): 115-123.

doi: 10.1002/smll.201201225 pmid: 23019062
[28]
LIU Y, WU D S, LIU Q P, ZHANG S T, TANG Y M, JIANG G F, LI S L, DING W. The sequevar distribution of Ralstonia solanacearum in tobacco-growing zones of China is structured by elevation. European Journal of Plant Pathology, 2017, 147(3): 541-551.
[29]
LIU Y, LIU Q P, TANG Y M, DING W. NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes. Biochemical and Biophysical Research Communications, 2019, 508(3): 940-945.
[30]
DING Y, ZHANG G T, WU H, HAI B, WANG L B, QIAN Y T. Nanoscale magnesium hydroxide and magnesium oxide powders: Control over size, shape, and structure via hydrothermal synthesis. Chemistry of Materials, 2001, 13(2): 435-440.
[31]
李想, 刘艳霞, 蔡刘体, 张恒, 石俊雄. 烟草青枯病菌在烟草根际的定殖及最适发病条件. 植物保护学报, 2016, 43(5): 796-804.
LI X, LIU Y X, CAI L T, ZHANG H, SHI J X. Colonization of Ralstonia solanacearum on tobacco roots and factors affecting virulence. Journal of Plant Protection, 2016, 43(5): 796-804. (in Chinese)
[32]
汪汉成, 郭华, 蔡琳, 余婧, 蔡刘体, 丁伟. 不同渗透压及pH环境对烟草青枯病菌致病力的影响. 植物保护学报, 2019, 46(4): 754-761.
WANG H C, GUO H, CAI L, YU J, CAI L T, DING W. Effects of different osmolity and pH conditions on the pathogenicity of Ralstonia solanacearum in tobacco leaves. Journal of Plant Protection, 2019, 46(4): 754-761. (in Chinese)
[33]
ZHAO L J, LU L, WANG A D, ZHANG H L, HUANG M, WU H H, XING B S, WANG Z Y, JI R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 2020, 68(7): 1935-1947.

doi: 10.1021/acs.jafc.9b06615 pmid: 32003987
[34]
叶俊伟, 杨瑶瑶, 陈弋心, 高梦阳, 柴政泽, 林源, 宁桂玲. 纳米氧化镁抗菌材料的研究进展. 化工进展, 2018, 37(4): 1460-1467.
YE J W, YANG Y Y, CHEN Y X, GAO M Y, CHAI Z Z, LIN Y, NING G L. Progress of nano-magnesium oxides based antimicrobial materials. Chemical Industry and Engineering Progress, 2018, 37(4): 1460-1467. (in Chinese)
[35]
WANG Z L, ZHANG X, FAN G J, QUE Y, XUE F, LIU Y H. Toxicity effects and mechanisms of MgO nanoparticles on the oomycete pathogen Phytophthora infestans and its host Solanum tuberosum. Toxics, 2022, 10(10): 553.
[36]
AHAMAD L, KHAN A A, KHAN M, FARID O, ALAM M. Exploring the nano-fungicidal efficacy of green synthesized magnesium oxide nanoparticles (MgO NPs) on the development, physiology, and infection of carrot (Daucus carota L.) with Alternaria leaf blight (ALB): Molecular docking. Journal of Integrative Agriculture, 2023, 22(10): 3069-3080.
[37]
ABDALLAH Y, OGUNYEMI S O, ABDELAZEZ A, ZHANG M C, HONG X X, IBRAHIM E, HOSSAIN A, FOUAD H, LI B, CHEN J P. The green synthesis of MgO nano-flowers using Rosmarinus officinalis L.(Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. BioMed Research International, 2019, 2019: 5620989.
[38]
RABEA A, NAEEM E, BALABEL N M, DAIGHAM G E. Management of potato brown rot disease using chemically synthesized CuO-NPs and MgO-NPs. Botanical Studies, 2023, 64(1): 20.

doi: 10.1186/s40529-023-00393-w pmid: 37458850
[39]
ZHU L X, HOU M Y, SUN H C, ZHANG Y J, ZHANG K, BAI Z Y, LI A C, DONG H Z, LIU L T, LI C D. Zinc oxide nanoparticles conferring resistance to Verticillium wilt in cotton. Industrial Crops and Products, 2025, 225: 120523.
[40]
WEI D Q, ZHANG X Y, GUO Y T, SALEEM K, JIA J T, LI M S, YU H H, HU Y Y, YAO X, WANG Y, CHANG X L, SONG C. CuO nanoparticles facilitate soybean suppression of Fusarium root rot by regulating antioxidant enzymes, isoflavone genes, and rhizosphere microbiome. Plant Physiology and Biochemistry, 2025, 222: 109788.
[41]
向顺雨, 王靖, 谢中玉, 施焕, 曹哲, 江龙, 马小舟, 汪代斌, 张帅, 黄进, 孙现超. 一种新型银纳米颗粒的制备及其抑制烟草赤星病菌的机制. 中国农业科学, 2020, 53(14): 2885-2896. doi: 10.3864/j.issn.0578-1752.2020.14.012.
XIANG S Y, WANG J, XIE Z Y, SHI H, CAO Z, JIANG L, MA X Z, WANG D B, ZHANG S, HUANG J, SUN X C. Preparation of a novel silver nanoparticle and its antifungal mechanism against Alternaria alternata. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896. doi: 10.3864/j.issn.0578-1752.2020.14.012. (in Chinese)
[42]
王泽乐. 马铃薯晚疫病监测预警系统优化及两种纳米制剂对致病疫霉的抑制研究[D]. 重庆: 西南大学, 2023.
WANG Z L. Optimization of monitoring and warning system for potato late blight and study on the inhibition of two nanopreparations against Phytophthora infestans[D]. Chongqing: Southwest University, 2023. (in Chinese)
[43]
DE GARA L, DE PINTO M C, TOMMASI F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiology and Biochemistry, 2003, 41(10): 863-870.
[44]
TORRES M A, JONES J D G, DANGL J L. Reactive oxygen species signaling in response to pathogens. Plant Physiology, 2006, 141(2): 373-378.

doi: 10.1104/pp.106.079467 pmid: 16760490
[45]
QIU J H, CHEN Y, LIU Z Q, WEN H, JIANG N, SHI H B, KOU Y J. The application of zinc oxide nanoparticles: An effective strategy to protect rice from rice blast and abiotic stresses. Environmental Pollution, 2023, 331: 121925.
[46]
SHAH S H, SHAN X L, BAIG S, ZHAO H W, ISMAIL B, SHAHZADI I, MAJEED Z, NAWAZISH S, SIDDIQUE M, BAIG A. First identification of potato tuber rot caused by Penicillium solitum, its silver nanoparticles synthesis, characterization and use against harmful pathogens. Frontiers in Plant Science, 2023, 14: 1255480.
[47]
王香梅. MgO NPs对茎瘤芥根肿病的防效评估及其作用机制研究[D]. 重庆: 重庆三峡学院, 2023.
WANG X M. Evaluation of the efficacy and mechanism of MgO NPs on root swelling disease of stem mustard[D]. Chongqing: Chongqing Three Gorges University, 2023. (in Chinese)
[48]
覃瀚仪, 李魏, 戴良英. 植物代谢产物在抗病反应中的功能研究进展. 中国农学通报, 2015, 31(18): 256-259.

doi: 10.11924/j.issn.1000-6850.casb15020089
QIN H Y, LI W, DAI L Y. Research progress of plant metabolites function on resistant response. Chinese Agricultural Science Bulletin, 2015, 31(18): 256-259. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb15020089
[49]
CHEN S Y, LI X, DUAN K, LI Z Y, BAI Y, WANG X Y, YANG J, ZOU X H, XU M L, WANG Y, GAO Q H. Changes in soluble sugars and the expression of sugar transporter protein genes in strawberry crowns responding to Colletotrichum fructicola infection. Physiology and Molecular Biology of Plants, 2024, 30(11): 1777-1793.
[50]
CHEN J N, YIN Y, ZHU Y S, SONG K, DING W. Favorable physiological and morphological effects of molybdenum nanoparticles on tobacco (Nicotiana tabacum L.): Root irrigation is superior to foliar spraying. Frontiers in Plant Science, 2023, 14: 1220109.
[51]
HAO Y, FANG P H, MA C X, WHITE J C, XIANG Z Q, WANG H T, ZHANG Z, RUI Y K, XING B S. Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environmental Research, 2019, 170: 1-6.
[52]
KHALID F, RASHEED Y, ASHRAF H, ASIF K, MAQSOOD M F, SHAHBAZ M, ZULFIQAR U, FARHAT F, NAWAZ S, AHMAD M. Nanoparticle-mediated phytohormone interplay: Advancing plant resilience to abiotic stresses. Journal of Crop Health, 2025, 77(2): 56.
[53]
CONRATH U, SILVA H, KLESSIG D F. Protein dephosphorylation mediates salicylic acid-induced expression of PR-1 genes in tobacco. The Plant Journal, 1997, 11(4): 747-757.
[54]
ADIE B A T, PÉREZ-PÉREZ J, PÉREZ-PÉREZ M M, GODOY M, SÁNCHEZ-SERRANO J J, SCHMELZ E A, SOLANO R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. The Plant Cell, 2007, 19(5): 1665-1681.
[55]
LI X Y, LIU Y, WANG Z T, YANG C L, ZHANG R Z, LUO Y B, MA Y M, DENG Y Z. Microbiome analysis and biocontrol bacteria isolation from rhizosphere soils associated with different sugarcane root rot severity. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1062351.
[56]
LI M, POMMIER T, YIN Y, WANG J, GU S H, JOUSSET A, KEUSKAMP J, WANG H G, WEI Z, XU Y H, SHEN Q R, KOWALCHUK G A. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. The ISME Journal, 2022, 16(3): 868-875.
[57]
SHI Y, DELGADO-BAQUERIZO M, LI Y T, YANG Y F, ZHU Y G, PEÑUELAS J, CHU H Y. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International, 2020, 142: 105869.
[58]
王泽铭, 李传虹, 马巧丽, 李千雪, 魏亚茹, 赵吉, 于景丽, 希尼尼根. 湿度盐度pH协同驱动锡林河景观疣微菌群空间异质性. 微生物学报, 2021, 61(6): 1728-1742.
WANG Z M, LI C H, MA Q L, LI Q X, WEI Y R, ZHAO J, YU J L, XININIGEN. Moisture, salinity and pH co-driving spatial heterogeneity of Verrucomicrobial populations in Xilin River landscape. Acta Microbiologica Sinica, 2021, 61(6): 1728-1742. (in Chinese)
[59]
RABODONIRINA S, RASOLOMAMPIANINA R, KRIER F, DRIDER D, MERHABY D, NET S, OUDDANE B. Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. Journal of Environmental Management, 2019, 232: 1-7.
[60]
郑钰婷, 胡宇如, 胡方平, 蔡学清. 利用aiiA基因筛选抗烟草青枯病生防菌株及其鉴定. 核农学报, 2021, 35(6): 1322-1328.

doi: 10.11869/j.issn.100-8551.2021.06.1322
ZHENG Y T, HU Y R, HU F P, CAI X Q. Screening of biocontrol bacteria against Ralstonia pseudosolanacearum with gene aiiA and identification of the bacteria. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1322-1328. (in Chinese)
[61]
刘彤. 芽孢杆菌在纳米二氧化硅介导的水稻抗稻瘟病中的作用机制研究[D]. 泰安: 山东农业大学, 2024.
LIU T. Mechanism of action of Bacillus in nano-silica-mediated resistance to rice blast[D]. Taian: Shandong Agricultural University, 2024. (in Chinese)
[62]
TAN H M, ZHOU S N, DENG Z J, HE M, CAO L X. Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biological Control, 2011, 59(2): 245-254.
[63]
孙天宇, 朱俊玉, 王世梅, 韦中, 徐阳春, 沈其荣. 番茄青枯病生防链霉菌的分离鉴定及生物学特性. 微生物学报, 2025, 65(4): 1469-1481.
SUN T Y, ZHU J Y, WANG S M, WEI Z, XU Y C, SHEN Q R. Isolation, identification, and biological characterization of Streptomyces strains against tomato bacterial wilt. Acta Microbiologica Sinica, 2025, 65(4): 1469-1481. (in Chinese)
[64]
LIAO J J, YUAN Z T, WANG X M, CHEN T T, QIAN K, CUI Y Y, RONG A P, ZHENG C Y, LIU Y X, WANG D D, PAN L M. Magnesium oxide nanoparticles reduce clubroot by regulating plant defense response and rhizosphere microbial community of tumorous stem mustard (Brassica juncea var. tumida). Frontiers in Microbiology, 2024, 15: 1370427.
[65]
廖宏娟, 张志斌, 江玉梅, 朱笃. 球毛壳菌对植物病原真菌和根结线虫的生物防治潜力. 天然产物研究与开发, 2022, 34(6): 1076-1089.
LIAO H J, ZHANG Z B, JIANG Y M, ZHU D. Biocontrol potential of Chaetomium globosum against plant pathogenic fungi and root-knot nematodes: A review. Natural Product Research and Development, 2022, 34(6): 1076-1089. (in Chinese)
[66]
司亚坤. 被孢霉属真菌介导潮土团聚体形成与磷周转的机制及应用[D]. 郑州: 河南农业大学, 2024.
SI Y K. Mechanism and application of Mortierella fungi mediating the formation of fluvo-aquic soil aggregates and phosphorus turnover[D]. Zhengzhou: Henan Agricultural University, 2024. (in Chinese)
[67]
覃仁柳, 林刚云, 吴银秀, 黄小丹, 杨尚东, 屈达才. 桑树青枯病与根际土壤肥力及微生物群落结构特征的研究. 中国生物防治学报, 2021, 37(6): 1256-1264.

doi: 10.16409/j.cnki.2095-039x.2021.06.014
QIN R L, LIN G Y, WU Y X, HUANG X D, YANG S D, QU D C. Characteristic of soil fertility and microbial community structure in rhizosphere of bacterial wilt infected and non-infected mulberry plants. Chinese Journal of Biological Control, 2021, 37(6): 1256-1264. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2021.06.014
[1] ZHAO Yong, ZHANG ZhongFu, WANG YuTong, AI Jing, LIU JiaYong, WU JianMing, DENG Jun, ZHANG YueBin. Effects of Potassium Application on Root Rhizosphere Microbial Community Changes and Growth of Sugarcane [J]. Scientia Agricultura Sinica, 2025, 58(13): 2630-2644.
[2] XIAO LiuHua, KANG NaiHui, LI ShuCheng, ZHENG ZhiYuan, LUO RaoRao, CHEN JinYin, CHEN Ming, XIANG MiaoLian. Effect of Methyl Jasmonate on Energy Metabolism and Membrane Lipid Metabolism During Resistance to Botryosphaeria dothidea in Kiwifruit [J]. Scientia Agricultura Sinica, 2024, 57(7): 1377-1393.
[3] JIANG YaNan, QI FangJian, LI WeiWei, CHEN JuLian, TAN XiaoLing. The Increasing Temperature Accelerated the Population Growth of Rhopalosiphum padi and Sitobion avenae by Wheat Rhizosphere Microorganisms [J]. Scientia Agricultura Sinica, 2024, 57(20): 4045-4056.
[4] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[5] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[6] ZHANG ZhongXiao, WANG HongYan, WANG KaiYun, WANG Dong, JIANG LiLi. Induction Effect of Sharp Eyespot of Wheat and the Effect of Wheat Growth After Ganoderma lucidum Polysaccharides (GLP) Seed Dressing [J]. Scientia Agricultura Sinica, 2018, 51(1): 96-104.
[7] ZHOU JingLong, FENG ZiLi, FENG HongJie, LI YunQing, YUAN Yuan, LI ZhiFang, WEI Feng, SHI YongQiang, ZHAO LiHong, SUN ZhengXiang, ZHU HeQin, ZHOU Yi. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium Bacillus cereus YUPP-10 Against Verticillium Wilt in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2017, 50(14): 2717-2727.
[8] XU Run-dong, SHENG Shi-ying, YANG Xiu-fen, LIU Yong. Effect of Induced Resistance of Oligosaccharins·Plant Activator Protein on Wheat to WYMV [J]. Scientia Agricultura Sinica, 2016, 49(18): 3561-3568.
[9] LIU Qing, LUAN Xue-tao, XU Shi-yan,MENG Ying, GAO Jiang-man, XI Zhu-mei. Effect of 24-epibrassinolide Treatment on Grapevine Leaf Against Plasmopara viticola [J]. Scientia Agricultura Sinica, 2016, 49(15): 3010-3018.
[10] NING Yu-bo, WANG Hong-yan, QIAO Kang, LIU Xiu-mei, WANG Kai-yun. Induced Resistance by Polysaccharides Isolated from Ganoderma lucidum in Tomato Against Gray Mold [J]. Scientia Agricultura Sinica, 2016, 49(11): 2103-2112.
[11] ZHONG Shou-qin, LIU Bo, WEI Chao-fu, HU Fei-nan. The Rock Fragments (<2 mm) and Their Action Mechanism on the Shear Strength of Purple Mudstone-Developed Soils [J]. Scientia Agricultura Sinica, 2015, 48(23): 4846-4858.
[12] SHI Yan-xia, XU Yu-fang, XIE Xue-wen, CHAI A-li, WANG Wei-wei, LI Bao-ju. Effects of FBT on Induction of Systemic Resistance in Cucumber Against Cucumber Fusarium Wilt Caused by Fusarium oxysporum f. sp. cucumerinum Owen [J]. Scientia Agricultura Sinica, 2015, 48(19): 3848-3856.
[13] WANG Jing, WANG Hai-Xia, TIAN Zhen-Dong. Histochemical Assays and Signaling Pathway Analysis of β-Aminobutyric Acid Induced Resistance in Potato Against Phytophthora infestans [J]. Scientia Agricultura Sinica, 2014, 47(13): 2571-2579.
[14] GAO Fen-12, WU Yuan-Hua-2, WANG Meng-Liang-1. Action of the Metabolite Produced by Streptomyces cacaoi Strain 182-2 on Alternaria alternata [J]. Scientia Agricultura Sinica, 2013, 46(23): 4933-4940.
[15] DING Chuan-Yu, QIAO Huan-Ying, SHEN Qi-Rong, RAN Wei, CHEN Wei. Control Effect and Action Mechanism Research of Bio-Organic Fertilizer on Eggplant Bacterial Wilt [J]. Scientia Agricultura Sinica, 2012, 45(2): 239-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!