Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2092-2105.doi: 10.3864/j.issn.0578-1752.2023.11.005

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics

ZHAO WeiSong1(), GUO QingGang1, LI SheZeng1, LU XiuYun1, GOU JianJun2, MA Ping1()   

  1. 1 Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, Hebei
    2 Hebei Plant Protection and Inspection Station, Shijiazhuang 050031
  • Received:2023-03-01 Accepted:2023-04-03 Online:2023-06-01 Published:2023-06-19

Abstract:

【Objective】The objective of this study is to research the effect of broccoli residues (BR) on enzyme activity of cotton rhizosphere soil and relationships between enzyme activity and carbon source utilization capacity, and to provide a theoretical basis for revealing the ecological mechanism of BR to prevent Verticillium wilt disease and promote the growth of cotton.【Method】In this study, soil treated with BR and soil treated without BR (CK) were set, and the activities of peroxidase, neutral phosphatase, arylsulfatase, chitinase, urease, β-glucosidase and N-acetyl-β-D-glucosaminidase in the rhizosphere soil of different treatments were determined, respectively. Shannon-Wiener index, Simpson index, Pielou index, McIntosh index, and richness index of different treatments were studied by Biolog-ECO technology. Principal component analysis (PCA) was used to compare the characteristics of microbial metabolic activity in rhizosphere soil under different treatments, and redundancy analysis (RDA) was used to analyze the correlations between soil enzyme activity and the utilization capacity of different types of carbon sources.【Result】Compared with the CK, the plant height, branch and boll numbers treated with BR significantly increased by 12.73%, 16.95%, and 10.36%, respectively. The disease index of cotton Verticillium wilt treated with BR decreased by 64.19%. BR treatment significantly increased pH, nitrate nitrogen (NO3--N) and organic matter (OM) contents in rhizosphere soil. Meanwhile, there was no significant difference in the functional diversity index of rhizosphere microorganisms between treatments. However, BR changed the metabolic activities of rhizosphere microorganisms. BR treatment significantly increased the activity of enzymes related to cycles of different nutrient elements. In the aspect of carbon cycle, the activity of peroxidase and β-glucosidase was 2.70 and 1.95 times that of the control, respectively. In the nitrogen cycle, the activity of urease, chitinase and N-acetyl-β-D-glucosidase was 1.42, 1.59 and 1.52 times that of the control, respectively. In the phosphorus cycle, the activity of neutral phosphatase was 1.33 times that of the control. In the sulfur cycle, the activity of arylsulfatase was 1.22 times that of the control. RDA showed that soil enzyme activities under the treatment of BR were positively correlated with the utilization capacity of L-phenylalanine, L-threonine, glycogen, 2-hydroxybenzoic acid, itaconic acid, and D-malic acid, respectively.【Conclusion】BR changed the carbon metabolic activity of rhizosphere soil microorganisms, significantly increased the activity of soil nutrient cycling-related enzymes, pH, nitrate nitrogen, and organic matter contents in rhizosphere soil. Meanwhile, different degrees of correlations were found between soil enzyme activity and carbon metabolism characteristics.

Key words: broccoli residues, cotton, nutrient cycle, soil enzyme, rhizosphere microorganism, Biolog-ECO, carbon metabolism characteristics

Table 1

Effect of addition of broccoli residues (BR) into soil on cotton biomass"

调查指标
Investigation index
处理Treatment
空白对照
CK
西兰花残体
BR
病情指数Disease index 30.83±7.24a 11.04±4.14b
株高Plant height (cm) 120.33±6.70b 135.65±1.29a
地径Ground diameter (cm) 2.10±0.07a 2.00±0.12a
植株鲜重Plant fresh weight (kg) 1.29±0.18a 1.55±0.30a
植株干重Plant dry weight (kg) 0.31±0.04a 0.37±0.07a
地下鲜重Underground fresh weight (kg) 0.065±0.0035a 0.076±0.0136a
地下干重Underground dry weight (kg) 0.018±0.0009a 0.021±0.0037a
果枝数(个/株)Branch number 14.75±1.48b 17.25±1.70a
结铃数(个/株)Boll number 30.89±2.90b 34.09±0.35a
产量Yield (kg/667 m2) 326.85±26.80a 349.57±42.09a

Table 2

Effect of addition of BR on cotton rhizosphere soil nutrients"

处理
Treatment
检测指标Index
pH 铵态氮NH4+-N (mg·kg-1) 硝态氮NO3--N (mg·kg-1) 无机磷IP (μg·g-1) 有机质OM (%)
西兰花残体BR 8.64±0.01a 11.99±0.23b 7.20±0.07a 4628.74±23.73a 0.74±0.03a
空白对照CK 8.54±0.02b 19.32±0.12a 5.75±0.27b 4582.78±41.25a 0.62±0.02b

Fig. 1

Effect of addition of BR on soil enzyme activities"

Fig. 2

Effect of addition of BR on microbial metabolic activities in cotton rhizosphere soil"

Table 3

Effect of addition of BR on microbial diversity index in cotton rhizosphere soil"

处理
Treatment
优势度指数
Simpson index (D)
香浓指数
Shannon-Wiener index (H)
McIntosh指数
McIntosh index (U)
丰富度指数
Richness index (R)
均匀度指数
Pielou index (J)
西兰花残体BR 0.9597±0.0008a 3.2827±0.0048a 7.8398±0.2625a 28.33±0.58a 0.9606±0.0079a
空白对照CK 0.9588±0.0010a 3.2586±0.0164a 8.1877±0.2030a 27.33±0.58a 0.9520±0.0082a

Fig. 3

Principal component analysis of carbon source utilization of cotton rhizosphere soil microorganisms by addition of BR"

Fig. 4

Relative utilization ratio for different carbon sources of rhizosphere soil microorganisms by addition of BR"

Fig. 5

Comparison of utilization for major carbon sources by rhizosphere soil microorganisms of different treatments"

Fig. 6

Redundancy analysis between soil enzyme activities and carbon source utilization capacity"

[1]
LAND C J, LAWRENCE K S, BURMESTER C H, MEYER B. Cultivar, irrigation, and soil contribution to the enhancement of Verticillium wilt disease in cotton. Crop Protection, 2017, 96: 1-6.

doi: 10.1016/j.cropro.2017.01.002
[2]
FRADIN E F, THOMMA B P. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. alboatrum. Molecular Plant Pathology, 2010, 7(2): 71-86.

doi: 10.1111/mpp.2006.7.issue-2
[3]
王亚娇, 赵卫松, 陈丹, 纪莉景, 李社增, 孔令晓, 马平. 基质中添加西兰花残体对大丽轮枝菌GFP标记菌株在棉花体内扩展的影响. 植物病理学报, 2020, 50(1): 89-96.
WANG Y J, ZHAO W S, CHEN D, JI L J, LI S Z, KONG L X, MA P. Effect of growth substrate amended with broccoli residues on the spread of GFP-labeled Verticillium dahliae strain in cotton plant. Acta Phytopathologica Sinica, 2020, 50(1): 89-96. (in Chinese)
[4]
赵卫松, 李社增, 鹿秀云, 郭庆港, 王亚娇, 王培培, 张晓云, 董丽红, 苏振贺, 马平. 西兰花植株残体还田对棉花黄萎病的防治效果及其安全性评价. 中国生物防治学报, 2019, 35(3): 449-455.

doi: 10.16409/j.cnki.2095-039x.2019.03.012
ZHAO W S, LI S Z, LU X Y, GUO Q G, WANG Y J, WANG P P, ZHANG X Y, DONG L H, SU Z H, MA P. Safety evaluation of broccoli residues returning on cotton growth and its control effect on Verticillium wilt. Chinese Journal of Biological Control, 2019, 35(3): 449-455. (in Chinese)
[5]
ZHAO W S, WANG P P, DONG L H, LI S Z, LU X Y, ZHANG X Y, SU Z H, GUO Q G, MA P. Effect of incorporation of broccoli residues into soil on occurrence of Verticillium wilt of spring- sowing-cotton and on rhizosphere microbial communities structure and function. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1115656.

doi: 10.3389/fbioe.2023.1115656
[6]
赵卫松, 郭庆港, 李社增, 王亚娇, 鹿秀云, 王培培, 苏振贺, 张晓云, 马平. 西兰花残体还田对棉花黄萎病防治效果及其对不同生育时期土壤细菌群落的影响. 中国农业科学, 2019, 52(24): 4505-4517. doi: 10.3864/j.issn.0578-1752.2019.24.006.

doi: 10.3864/j.issn.0578-1752.2019.24.006
ZHAO W S, GUO Q G, LI S Z, WANG Y J, LU X Y, WANG P P, SU Z H, ZHANG X Y, MA P. Control efficacy of broccoli residues on cotton Verticillium wilt and its effect on soil bacterial community at different growth stages. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517. doi: 10.3864/j.issn.0578-1752.2019.24.006. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.24.006
[7]
张福锁, 申建波, 冯固. 根际生态学——过程与调控. 北京: 中国农业大学出版社, 2009: 33-40.
ZHANG F S, SHEN J B, FENG G. Rhizosphere Ecology:Processes & Management. Beijing: China Agricultural University Press, 2009: 33-40. (in Chinese)
[8]
RAJKUMAR M, AE N, PRASAD M N, FREITAS H. Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 2010, 28(3): 142-149.

doi: 10.1016/j.tibtech.2009.12.002
[9]
闫慧荣, 曹永昌, 谢伟, 和文祥, 田霄鸿. 玉米秸秆还田对土壤酶活性的影响. 西北农林科技大学学报(自然科学版), 2015, 43(7): 177-184.
YAN H R, CAO Y C, XIE W, HE W X, TIAN X H. Effects of maize straw returning on soil enzyme activity. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(7): 177-184. (in Chinese)
[10]
王碧胜, 于维水, 武雪萍, 高丽丽, 李景, 宋霄君, 李生平, 卢晋晶, 郑凤君, 蔡典雄. 不同耕作措施下添加秸秆对土壤有机碳及其相关因素的影响. 中国农业科学, 2021, 54(6): 1176-1187. doi: 10.3864/j.issn.0578-1752.2021.06.009.

doi: 10.3864/j.issn.0578-1752.2021.06.009
WANG B S, YU W S, WU X P, GAO L L, LI J, SONG X J, LI S P, LU J J, ZHENG F J, CAI D X. Effects of straw addition on soil organic carbon and related factors under different tillage practices. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187. doi: 10.3864/j.issn.0578-1752.2021.06.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.06.009
[11]
于会泳, 宋晓丽, 王树声, 曹丽君, 郭利, 王晓丽, 彭功银. 低分子量有机酸对植烟土壤酶活性和细菌群落结构的影响. 中国农业科学, 2015, 48(24): 4936-4947. doi: 10.3864/j.issn.0578-1752.2015.24.008.

doi: 10.3864/j.issn.0578-1752.2015.24.008
YU H Y, SONG X L, WANG S S, CAO L J, GUO L, WANG X L, PENG G Y. Effects of low molecular weight organic acids on soil enzymes activities and bacterial community structure. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947. doi: 10.3864/j.issn.0578-1752.2015.24.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.24.008
[12]
WEINTRAUB M N, SCHIMEL J P. The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochemistry, 2005, 73(2): 359-380.

doi: 10.1007/s10533-004-0363-z
[13]
孙艺文. 不同作物残茬及秸秆对连作土壤的修复作用[D]. 哈尔滨: 东北农业大学, 2013.
SUN Y W. Effect of single and combined use of different kinds of residues and straws on cucumber continuous cropping soil[D]. Harbin:Northeast Agricultural University, 2013. (in Chinese)
[14]
孟庆英, 张春峰, 张娣, 朱宝国, 王囡囡, 贾会彬, 郭泰, 高雪冬. 秸秆还田方式对土壤酶及大豆产量的影响. 土壤通报, 2015, 46(3): 642-647.
MENG Q Y, ZHANG C F, ZHANG D, ZHU B G, WANG N N, JIA H B, GUO T, GAO X D. Effects of straw returning patterns on soil enzyme activities and yield of soybean. Chinese Journal of Soil Science, 2015, 46(3): 642-647. (in Chinese)
[15]
SUBBARAO K V, HUBBARD J C, KOIKE S T. Evaluation of broccoli residue incorporation into field soil for Verticillium wilt control in cauliflower. Plant Disease, 1999, 83(2): 124-129.

doi: 10.1094/PDIS.1999.83.2.124
[16]
INDERBITZIN P, WARD J, BARBELLA A, SOLARES N, IZYUMIN D, BURMAN P, CHELLEMI D O, SUBBARAO K V. Soil microbiomes associated with Verticillium wilt-suppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology, 2018, 108(1): 31-43.

doi: 10.1094/PHYTO-07-17-0242-R
[17]
IKEDA K, BANNO S, FURUSAWA A, SHIBATA S, NAKAHO K, FUJIMURA M. Crop rotation with broccoli suppresses Verticillium wilt of eggplant. Journal of General Plant Pathology, 2015, 81(1): 77-82.

doi: 10.1007/s10327-014-0559-6
[18]
LARKIN R P, HONEYCUTT C W, OLANYA O M. Management of Verticillium wilt of potato with disease-suppressive green manures and as affected by previous cropping history. Plant Disease, 2011, 95(5): 568-576.

doi: 10.1094/PDIS-09-10-0670
[19]
ZHAO W S, GUO Q G, LI S Z, WANG P P, DONG L H, SU Z H, ZHANG X Y, LU X Y, MA P. Effects of Bacillus subtilis NCD-2 and broccoli residues return on potato Verticillium wilt and soil fungal community structure. Biological Control, 2021, 159: 104628.

doi: 10.1016/j.biocontrol.2021.104628
[20]
ZHAO W S, LI S Z, DONG L H, WANG P P, LU X Y, ZHANG X Y, SU Z H, GUO Q G, MA P. Effects of different crop rotations on the incidence of cotton Verticillium wilt and structure and function of the rhizospheric microbial community. Plant and Soil, doi: 10.1007/s11104-022-05842-2.

doi: 10.1007/s11104-022-05842-2
[21]
李社增, 马平, 刘杏忠, HUANG H C, 陈新华. 利用拮抗细菌防治棉花黄萎病. 华中农业大学学报, 2001, 20(5): 422-425.
LI S Z, MA P, LIU X Z, HUANG H C, CHEN X H. Biological control of cotton Verticillium wilt by antagonistic bacteria. Journal of Huazhong Agricultural University, 2001, 20(5): 422-425. (in Chinese)
[22]
赵卫松, 郭庆港, 苏振贺, 王培培, 董丽红, 胡卿, 鹿秀云, 张晓云, 李社增, 马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征. 中国农业科学, 2021, 54(2): 296-309. doi: 10.3864/j.issn.0578-1752.2021.02.006.

doi: 10.3864/j.issn.0578-1752.2021.02.006
ZHAO W S, GUO Q G, SU Z H, WANG P P, DONG L H, HU Q, LU X Y, ZHANG X Y, LI S Z, MA P. Characterization of fungal community structure in the rhizosphere soil of healthy and diseased- Verticillium wilt potato plants and carbon source utilization. Scientia Agricultura Sinica, 2021, 54(2): 296-309. doi: 10.3864/j.issn.0578-1752.2021.02.006. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.02.006
[23]
关松荫. 土壤酶及其研究方法. 北京: 中国农业出版社, 1986.
GUAN S Y. Research Method of Soil Enzymes. Beijing: China Agriculture Press, 1986. (in Chinese)
[24]
FENG Y X, HU Y Y, WU J S, CHEN J H, YRJÄLÄ K, YU W W. Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease. Forest Ecology and Management, 2019, 432: 932-941.

doi: 10.1016/j.foreco.2018.10.028
[25]
PAUDEL N, SUBEDI S, MANDAL T N, DAS B D. Establishment of plant residues and inorganic fertilizer application for growth and yield of Vigna unguiculata (L.) in flood-affected cropland of Koshi Tappu Region, Eastern Nepal. European Journal of Biological Research, 2021, 11(1): 75-87.
[26]
邓云颖, 张伟朴, 阮维斌, 马成仓. 作物残体与天然脂肪酸配合对辣椒生长及根结线虫种群密度的影响. 北方园艺, 2012(6): 1-4.
DENG Y Y, ZHANG W P, RUAN W B, MA C C. Effects of crop residues combined with fatty acids on pepper growth and population density of root-knot nematode. Northern Horticulture, 2012(6): 1-4. (in Chinese)
[27]
李增亮, 任晶, 梁鑫宇, 张国辉, 潘凯. 七种植物秸秆对连作番茄苗生长及土壤酶活性的影响. 北方园艺, 2019(20): 17-24.
LI Z L, REN J, LIANG X Y, ZHANG G H, PAN K. Effect of seven plant straws on the growth of continuous cropping tomato and the activity of soil enzyme. Northern Horticulture, 2019(20): 17-24. (in Chinese)
[28]
张奎, 邹兵, 宋贺, 黄婷, 车钊, 柯健, 董召荣. 耕播方式及秸秆还田对皖北小麦产量和品质的影响. 安徽农业大学学报, 2019, 46(1): 111-116.
ZHANG K, ZOU B, SONG H, HUANG T, CHE Z, KE J, DONG Z R. The effect of farming methods and straw returning on yield and quality of wheat in north of Anhui Province. Journal of Anhui Agricultural University, 2019, 46(1): 111-116. (in Chinese)
[29]
马超, 王玉宝, 邬刚, 王泓, 汪建飞, 朱林, 李佳佳, 马晓静, 柴如山. 近十年安徽省秸秆直接还田研究进展. 中国农业科学, 2022, 55(18): 3584-3599. doi: 10.3864/j.issn.0578-1752.2022.18.009.

doi: 10.3864/j.issn.0578-1752.2022.18.009
MA C, WANG Y B, WU G, WANG H, WANG J F, ZHU L, LI J J, MA X J, CHAI R S. Research progress of direct straw return in Anhui Province over the last decade. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599. doi: 10.3864/j.issn.0578-1752.2022.18.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.18.009
[30]
GONG B, BLOSZIES S, LI X, WEI M, YANG F, SHI Q, WANG X. Efficacy of garlic straw application against root-knot nematodes on tomato. Scientia Horticulturae, 2013, 161: 49-57.

doi: 10.1016/j.scienta.2013.06.027
[31]
WANG D, ROSEN C, KINKEL L, CAO A, THARAYIL N, GERIK J. Production of methyl sulfide and dimethyl disulfide from soil- incorporated plant materials and implications for controlling soilborne pathogens. Plant and Soil, 2009, 324(1/2): 185-197.

doi: 10.1007/s11104-009-9943-y
[32]
李淑敏, 郑成彧, 张润芝, 杨自超, 曲红云, 刘彤彤, 袁睿, 姚小桐, 王雪蓉, 许宁, 张春怡. 生物熏蒸对大棚连作茄子产量和黄萎病发病率影响. 东北农业大学学报, 2017, 48(5): 35-41.
LI S M, ZHENG C Y, ZHANG R Z, YANG Z C, QU H Y, LIU T T, YUAN R, YAO X T, WANG X R, XU N, ZHANG C Y. Effect of biofumigation on yield and Verticillium wilt incidence of continuous eggplant in greenhouse. Journal of Northeast Agricultural University, 2017, 48(5): 35-41. (in Chinese)
[33]
柳瑞冰, 岳弘辰, 冯自力, 冯鸿杰, 赵丽红, 张亚林, 魏锋, 朱荷琴. 棉田复种芥菜对土壤中大丽轮枝菌和黄萎病的影响. 中国棉花, 2021, 48(3): 15-18.
LIU R B, YUE H C, FENG Z L, FENG H J, ZHAO L H, ZHANG Y L, WEI F, ZHU H Q. Effects of intercropping mustard in cotton field on Verticillium dahliae in soil and Verticillium wilt. China Cotton, 2021, 48(3): 15-18. (in Chinese)
[34]
姜勇, 梁文举, 闻大中. 免耕对农田土壤生物学特性的影响. 土壤通报, 2004, 35(3): 347-351.
JIANG Y, LIANG W J, WEN D Z. Effects of no-tillage on soil biological properties in farmlands: A review. Chinese Journal of Soil Science, 2004, 35(3): 347-351. (in Chinese)
[35]
路怡青, 朱安宁, 张佳宝, 陈效民, 舒馨. 免耕和秸秆还田对小麦生长期内土壤酶活性的影响. 生态与农村环境学报, 2013, 29(3): 329-334.
LU Y Q, ZHU A N, ZHANG J B, CHEN X M, SHU X. Effects of no-tillage and straw incorporation on soil enzyme activity during wheat growth. Journal of Ecology and Rural Environment, 2013, 29(3): 329-334. (in Chinese)
[36]
巩彪, 张丽丽, 隋申利, 王秀峰, 魏珉, 史庆华, 杨凤娟, 李岩. 大蒜秸秆对番茄根结线虫病及根际微生态的影响. 中国农业科学, 2016, 49(5): 933-941. doi: 10.3864/j.issn.0578-1752.2016.05.013.

doi: 10.3864/j.issn.0578-1752.2016.05.013
GONG B, ZHANG L L, SUI S L, WANG X F, WEI M, SHI Q H, YANG F J, LI Y. Effects of garlic straw application on controlling tomato root-knot nematode disease and rhizospheric microecology. Scientia Agricultura Sinica, 2016, 49(5): 933-941. doi: 10.3864/j.issn.0578-1752.2016.05.013. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.05.013
[37]
李文广, 杨晓晓, 黄春国, 薛乃雯, 夏清, 刘小丽, 张晓琪, 杨思, 杨珍平, 高志强. 饲料油菜作绿肥对后茬麦田土壤肥力及细菌群落的影响. 中国农业科学, 2019, 52(15): 2664-2677. doi: 10.3864/j.issn.0578-1752.2019.15.010.

doi: 10.3864/j.issn.0578-1752.2019.15.010
LI W G, YANG X X, HUANG C G, XUE N W, XIA Q, LIU X L, ZHANG X Q, YANG S, YANG Z P, GAO Z Q. Effects of rapeseed green manure on soil fertility and bacterial community in dryland wheat field. Scientia Agricultura Sinica, 2019, 52(15): 2664-2677. doi: 10.3864/j.issn.0578-1752.2019.15.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.15.010
[38]
徐国伟, 段骅, 王志琴, 刘立军, 杨建昌. 麦秸还田对土壤理化性质及酶活性的影响. 中国农业科学, 2009, 42(3): 934-942. doi: 10.3864/j.issn.0578-1752.2009.03.023.

doi: 10.3864/j.issn.0578-1752.2009.03.023
XU G W, DUAN H, WANG Z Q, LIU L J, YANG J C. Effect of wheat-residue application on physical and chemical characters and enzymatic activities in soil. Scientia Agricultura Sinica, 2009, 42(3): 934-942. doi: 10.3864/j.issn.0578-1752.2009.03.023. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2009.03.023
[39]
李晋, 杨晓晓, 杨文平, 李文广, 景豆豆, 杨珍平, 高志强. 饲料油菜压青还田对后作小麦土壤真菌群落的影响. 微生物学报, 2021, 61(9): 2869-2882.
LI J, YANG X X, YANG W P, LI W G, JING D D, YANG Z P, GAO Z Q. Effect of forage rape green manure returning to field on soil fungal community in winter wheat field. Acta Microbiologica Sinica, 2021, 61(9): 2869-2882. (in Chinese)
[40]
常芳娟, 张贵云, 张丽萍, 吕贝贝, 刘珍, 范巧兰, 姚众. 生物熏蒸配施微生物菌剂对西瓜连作土壤真菌群落结构的影响. 中国生态农业学报, 2022, 30(2): 248-257.
CHANG F J, ZHANG G Y, ZHANG L P, B B, LIU Z, FAN Q L, YAO Z. Effects of biological fumigation combined with microbial agents on fungi community structure in continuous watermelon cropping soil. Chinese Journal of Eco-Agriculture, 2022, 30(2): 248-257. (in Chinese)
[41]
ACOSTA-MARTINEZ V, MIKHA M M, VIGIL M F. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains. Applied Soil Ecology, 2007, 37(1/2): 41-52.

doi: 10.1016/j.apsoil.2007.03.009
[42]
CHEN X W, ZHAO H B, LIU J F, MAO A R. Winter wheat nitrogen utilization under different mulching practices on the Loess Plateau. Agronomy Journal, 2020, 112(2): 1391-1405.

doi: 10.1002/agj2.v112.2
[43]
ZUO Q S, KUAI J, ZHAO L, HU Z, WU J S, ZHOU G S. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Research, 2017, 203: 47-54.

doi: 10.1016/j.fcr.2016.12.016
[44]
GUO Z B, LIU H, HUA K K, WANG D Z, HE C L. Long-term straw incorporation benefits the elevation of soil phosphorus availability and use efficiency in the agroecosystem. Spanish Journal of Agricultural Research, 2018, 16(3): e1101.

doi: 10.5424/sjar/2018163-12857
[45]
胡宏祥, 程燕, 马友华, 于学胜, 项金霞. 油菜秸秆还田腐解变化特征及其培肥土壤的作用. 中国生态农业学报, 2012, 20(3): 297-302.
HU H X, CHENG Y, MA Y H, YU X S, XIANG J X. Decomposition characteristics of returned rapeseed straw in soil and effects on soil fertility. Chinese Journal of Eco-Agriculture, 2012, 20(3): 297-302. (in Chinese)

doi: 10.3724/SP.J.1011.2012.00297
[46]
韩上, 武际, 李敏, 陈峰, 王允青, 程文龙, 唐杉, 王慧, 郭熙盛, 卢昌艾. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质. 植物营养与肥料学报, 2020, 26(2): 276-284.
HAN S, WU J, LI M, CHEN F, WANG Y Q, CHENG W L, TANG S, WANG H, GUO X S, LU C A. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese)
[47]
KORON D, SONJAK S, REGVAR M. Effects of non-chemical soil fumigant treatments on root colonisation with arbuscular mycorrhizal fungi and strawberry fruit production. Crop Protection, 2014, 55: 35-41.

doi: 10.1016/j.cropro.2013.09.009
[48]
谭兆赞, 刘可星, 廖宗文. 土壤微生物BIOLOG分析中特征碳源的判别. 华南农业大学学报, 2006, 27(4): 10-13.
TAN Z Z, LIU K X, LIAO Z W. The discrimination of characteristic carbon sources on soil microbial community using BIOLOG microplates. Journal of South China Agricultural University, 2006, 27(4): 10-13. (in Chinese)
[49]
FENG X Y, WANG Q L, SUN Y H, ZHANG S W, WANG F Y. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. Journal of Hazardous Materials, 2022, 424: 127364.

doi: 10.1016/j.jhazmat.2021.127364
[50]
席劲瑛, 胡洪营, 钱易. Biolog方法在环境微生物群落研究中的应用. 微生物学报, 2003, 43(1): 138-141.
XI J Y, HU H Y, QIAN Y. Application of Biolog system in the study of microbial community. Acta Microbiologica Sinica, 2003, 43(1): 138-141. (in Chinese)
[51]
MARSCHNER P, KANDELER E, MARSCHNER B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35(3): 453-461.

doi: 10.1016/S0038-0717(02)00297-3
[52]
唐海明, 肖小平, 李超, 汤文光, 郭立君, 汪柯, 孙玉桃, 程凯凯, 孙耿, 潘孝晨. 冬季覆盖作物秸秆还田对双季稻田根际土壤微生物群落功能多样性的影响. 生态学报, 2018, 38(18): 6559-6569.
TANG H M, XIAO X P, LI C, TANG W G, GUO L J, WANG K, SUN Y T, CHENG K K, SUN G, PAN X C. Effects of recycling straw of different winter covering crops on rhizospheric microbial community functional diversity in a double-cropped paddy field. Acta Ecologica Sinica, 2018, 38(18): 6559-6569. (in Chinese)
[53]
周运来, 张振华, 范如芹, 钱晓晴, 卢信, 刘丽珠. 小麦秸秆不同还田方式下土壤微生物碳代谢多样性特征. 生态与农村环境学报, 2017, 33(10): 913-920.
ZHOU Y L, ZHANG Z H, FAN R Q, QIAN X Q, LU X, LIU L Z. Carbon metabolism diversity characteristics of soil microbe affected by wheat straw incorporation pattern. Journal of Ecology and Rural Environment, 2017, 33(10): 913-920. (in Chinese)
[54]
李正, 刘国顺, 敬海霞, 叶协锋, 解昌盛, 向永光, 张文平, 杨超, 王永, 习相银. 绿肥与化肥配施对植烟土壤微生物量及供氮能力的影响. 草业学报, 2011, 20(6): 126-134.
LI Z, LIU G S, JING H X, YE X F, XIE C S, XIANG Y G, ZHANG W P, YANG C, WANG Y, XI X Y. Effects of green manure application combined with chemical fertilizers on microbial biomass C, N and nitrogen supplying characteristics of tobacco-planting soils. Acta Prataculturae Sinica, 2011, 20(6): 126-134. (in Chinese)
[55]
李春格, 李晓鸣, 王敬国. 大豆连作对土体和根际微生物群落功能的影响. 生态学报, 2006, 26(4): 1144-1150.
LI C G, LI X M, WANG J G. Effect of soybean continuous cropping on bulk and rhizosphere soil microbial community function. Acta Microbiologica Sinica, 2006, 26(4): 1144-1150. (in Chinese)
[56]
章家恩, 蔡燕飞, 高爱霞, 朱丽霞. 土壤微生物多样性实验研究方法概述. 土壤, 2004, 36(4): 346-350.
ZHANG J E, CAI Y F, GAO A X, ZHU L X. Review on laboratory methods for soil microbial diversity. Soils, 2004, 36(4): 346-350. (in Chinese)
[57]
KONOPKA A, OLIVER L, TURCO R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology, 1998, 35: 103-115.

pmid: 9541547
[1] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[2] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[5] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[6] SONG Ci, GU FengXu, XING ZhenZhen, ZHANG JunMing, HE WenXue, WANG TianBo, WANG YuLu, CHEN JunYing. Physiological Changes and Integrity of ATP Synthase Subunits mRNA in Naturally Aged Cotton Seeds [J]. Scientia Agricultura Sinica, 2023, 56(10): 1827-1837.
[7] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[8] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[9] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[10] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[11] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[12] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[13] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[14] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[15] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!