Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (16): 3345-3356.doi: 10.3864/j.issn.0578-1752.2025.16.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Preparation of Monoclonal Antibody Against African Swine Fever Virus pD345L Protein and Identification of Its Epitope

HE XiaoPing(), ZHANG YuanFeng, LIU XueMin, HUANG Li*(), WENG ChangJiang   

  1. Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory for Animal Disease Control and Prevention/Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069
  • Received:2025-02-23 Accepted:2025-07-10 Online:2025-08-11 Published:2025-08-11
  • Contact: HUANG Li

Abstract:

【Objective】The aim of this study was to prepare monoclonal antibodies (mAbs) against the pD345L protein (pD345L) of African swine fever virus (ASFV), and to analyze the linear B-cell epitopes recognized by these antibodies, so as to lay a foundation for exploring the function of pD345L in the infection and pathogenesis of ASFV. 【Method】The prokaryotic expression plasmid pET-28a-D345L was constructed, transformed into Escherichia coli BL21(DE3) receptor cells, expressed and purified recombinant pD345L protein (rpD345L) by affinity chromatography. The purified recombinant pD345L protein was emulsified with an equal volume of Freund's complete adjuvant and immunized 5-week-old SPF BALB/c mice once every two weeks for a total of 3 times. Both the second and third immunization were emulsified with Freund's incomplete adjuvant. A week after the third immunization, the blood sample was collected through the submaxillary vein of mice, serum was separated, serum antibody titer was detected by indirect enzyme-linked immunosorbent assay (ELISA), and mice with high antibody titer were selected to enhance immunity. After 3 days of immunization, the mouse spleen cells were fused with mouse myeloma cells (SP2/0). Recombinant GST-pD345L was used as the coated antigen, and positive hybridoma cells were screened by ELISA. After three-time screening, hybridoma cell lines that could secrete pD345L protein mAbs were obtained and injected into the abdominal cavity of mice to prepare ascites. The heavy and light chain types of mAbs were identified using the monoclonal antibody subclass identification kit. The overexpressed pD345L protein and ASFV HLJ/18 infected porcine alveolar macrophages (PAMs) were identified by Western blot and indirect immunofluorescence (IFA), respectively, using the prepared mAbs as the primary antibody. Then the truncated pD345L protein was fused with GST, and the epitopes were identified with screened mAbs, and the conserved types of identified epitopes in different ASFV strains were analyzed. 【Result】After induction by IPTG, pD345L was expressed as an inclusion body with a molecular weight of 40.5 kDa. After immunizing BALB/c mice, two hybridoma cell lines with stable secretion of pD345L mAbs were selected by indirect ELISA method, and named 10H3 and 5G1. The results of subclass identification showed that the heavy chain type of the two strains of mAbs was IgG1 type, the light chain type was κ chain, and the antibody titer was 1:1 638 400. Western blot and IFA results showed that the prepared mAbs could recognize naturally expressed pD345L. The results showed that the minimum linear B-cell epitopes of 10H3 and 5G1 mAbs were 1METFVRLFKD10 and 321YEKICCSEES330, respectively. These two epitopes were conserved in different ASFV strains. 【Conclusion】In this study, the recombinant pD345L protein was expressed and purified in prokaryotes, two strains of pD345L protein mAbs were prepared, and their recognized epitopes were identified. Both strains of mAbs could effectively recognize pD345L protein expressed during ASFV infection, which laid a foundation for further research on the function of ASFV pD345L protein.

Key words: African swine fever virus, pD345L protein, monoclonal antibodies, epitope

Table 1

PCR amplification primer of ASFV D345L gene and its truncated fragment"

片段Fragment 引物 Primers (5'-3')
D345L

D345L-D1
F: 5'-ATGGGTCGCGGATCC GAATTCATGGAAACCTTTGTACGC-3'
R: 5'-CACCACCACCACCAC CTCGAGCTAAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'

D345L-D2
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGTA-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCCTAACGCTGGGATACACT-3'

D345L-D3

D345L-P4

D345L-P5

D345L-P6

D345L-P7

D345L-P8

D345L-P9

D345L-P10

D345L-P11

D345L-P12

D345L-P13

D345L-P14

D345L-P15

D345L-P16
R: 5'-GTCACGATGCGGCCG CTCGAGGCCAAAATCTTGAGGAGC-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCCT-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCTAAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGGTGACAAAACCCATCGG-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAAACCCATCGGGGCTAT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGGTATCCCAAATAGGTCC-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGATTGTCACCTATGACG-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCAACTCAAGCAGATCTTT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAAAAAGGGTTCCCCAGC-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGGTTCAAATTCTTCTTAA-3'
F: 5'- TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGTTCCGCCAAGGTTATAT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGGGTTTAAACCTAAA-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGAGCCACCCACCTGAGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAG ATGCCAGGCATCGGAGC-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATGGAAACCTTTGTACGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGGTCTTTAAACAGGCGTACA-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCTCTCCTCAGCAGCGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
D345L-P17

D345L-P18

D345L-P19

D345L-P20

D345L-P21

D345L-P22

D345L-P23

D345L-P24

D345L-P25

D345L-P26

D345L-P27

D345L-P28

D345L-P29

D345L-P30

D345L-P31

D345L-P32

D345L-P33

D345L-P34

D345L-P35

D345L-P36

D345L-P37

D345L-P38
F: 5'-TTCCAGGGGCCCCTG GGATCCGCTATTCGTCGCACTCAG-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGACCTTGCCAGCGTTTTA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCTACAAAAGCTATTATATA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCAAAGCAAATCTTTTTAA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCCGCGCTGCTTGTAGCTG-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCGTGTTAGTAAAGA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCTTCTGCCAAACCACCGTC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATTCATATTGATGGGACC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCCCCGGACATAGTAATAGC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCTGTCACCTAACGCTGGGA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCCTAACGCTGGGATACACT-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCCAGGACTGTTGAGTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAAAATTGTCGATGTCCTC-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAAAATTGTCGATGTCCTC-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGCATCTCCATGGGGGATG-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTATGTAGGTCACGTA-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGGATGGGATATTTGTCTTT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGATGTTTCATAACTGGAATT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAAAGACCTTCCATCCAA-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGATTTGGCATTTCGGGACA-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGGCATAGAATAGTGAA-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGTTTTTGATACAGCGTTTCA-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAAATGTTTCCGCGTCGAGCG-3'
D345L-P39

D345L-P40

D345L-P41

D345L-P42

D345L-P43

D345L-P44

D345L-P45

D345L-P46

D345L-P47

D345L-P48

D345L-P49

D345L-P50

D345L-P51
F: 5'-TTCCAGGGGCCCCTG GGATCCGAGCACACCGAGGCTCC-3'
R: 5'-GTCACGATGCGGCCG CTCGAG TTGAGGAGCCTCGGTGTGC-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGATTTTGGCACGCTCGAC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCCGCCAACTACTTGAAA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGATCAGTACACTATTCA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCTATGAAACCGCGTGTC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGTGGTTGGCTACTTTG-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATCTTTCAAATAATTCCA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCCCCCAGTTTTTAAAAGA-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATACAACAGTTCTTACGT-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCATTAAAGCCTCGCCATC-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCTATGAAAAAATTTGCTG-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCGCTCTATCCACAGAGG-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'
F: 5'-TTCCAGGGGCCCCTG GGATCCACAGATATGCTTACT-3'
R: 5'-GTCACGATGCGGCCG CTCGAGAGTAAGCATATCTGT-3'

Fig. 1

SDS-PAGE and Western blot identification results of rpD345L A: The expression of pET-28a-D345L/BL21(DE3) induced by IPTG was detected by SDS-PAGE; B: The purified rpD345L was detected by SDS-PAGE; C: The purified rpD345L was identified by Western blot. M: Protein Marker; 1: Uninduced pET-28a-D345L/BL21(DE3); 2-4: Induced pET-28a-D345L/ BL21(DE3) bacterial fluid, supernatant and inclusion body, respectively; 5: The purification effect of rpD345L was detected by SDS-PAGE; 6: The reactivity of purified rpD345L by western blot"

Fig. 2

Subclass identification of pD345L mAbs and titer detection of ascites A: Heavy chain types of two mAbs prepared by SBA Clonotyping System-HRP antibody subclass kit analysis; B: Light chain types of two mAbs prepared by SBA Clonotyping System-HRP antibody subclass kit analysis; C: ELISA was used to detect the titer of mouse ascites"

Fig. 3

Western blot detection for the reactivity of anti-pD345L mAbs with pD345L A: The expression of gradient-transfected Flag-D345L (1μg, 2μg, 4μg) was detected by Western blot.; B: Western blot detected the expression of pD345L in PAMs infected by ASFV"

Fig. 4

IFA analysis for the reactivity of pD345L mAbs with pD345L A, B: IFA detected the expression of pD345L in PAMs infected by ASFV"

Fig. 5

Identification of antigenic epitopes recognized by pD345L mAbs by Western blot"

Fig. 6

Analysis of the conservation of antigenic epitope and their reactivity with positive serum A, B: Conservative analysis of antigen epitope; C: Analysis of reactivity between antigen epitope and ASFV positive serum"

[1]
SÁNCHEZ-CORDÓN P J, MONTOYA M, REIS A L, DIXON L K. African swine fever: A re-emerging viral disease threatening the global pig industry. The Veterinary Journal, 2018, 233: 41-48.
[2]
LI Z Y, CHEN W X, QIU Z L, LI Y W, FAN J D, WU K K, LI X W, ZHAO M Q, DING H X, FAN S Q, CHEN J D. African swine fever virus: A review. Life, 2022, 12(8): 1255.
[3]
DIXON L K, SUN H, ROBERTS H. African swine fever. Antiviral Research, 2019, 165: 34-41.

doi: S0166-3542(19)30096-8 pmid: 30836106
[4]
SÁNCHEZ-VIZCAÍNO J M, MUR L, MARTÍNEZ-LÓPEZ B. African swine fever (ASF): Five years around Europe. Veterinary Microbiology, 2013, 165(1/2): 45-50.
[5]
冯春莹, 张朝霞, 刘云飞, 黄丽, 翁长江. 非洲猪瘟病毒p54蛋白单克隆抗体的制备及其抗原表位鉴定. 中国农业科学, 2024, 57(19): 3936-3944. doi: 10.3864/j.issn.0578-1752.2024.19.015.
FENG C Y, ZHANG Z X, LIU Y F, HUANG L, WENG C J. Preparation of monoclonal antibody againstafrican swine fever virus P54 protein and identification of its epitope. Scientia Agricultura Sinica, 2024, 57(19): 3936-3944. doi: 10.3864/j.issn.0578-1752.2024.19.015. (in Chinese)
[6]
罗玉子, 孙元, 王涛, 仇华吉. 非洲猪瘟——我国养猪业的重大威胁. 中国农业科学, 2018, 51(21): 4177-4187. doi: 10.3864/j.issn.0578-1752.2018.21.016.
LUO Y Z, SUN Y, WANG T, QIU H J. African swine fever: A major threat to the Chinese swine industry. Scientia Agricultura Sinica, 2018, 51(21): 4177-4187. doi: 10.3864/j.issn.0578-1752.2018.21.016. (in Chinese)
[7]
DIXON L K, CHAPMAN D A G, NETHERTON C L, UPTON C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14.

doi: 10.1016/j.virusres.2012.10.020 pmid: 23142553
[8]
REVILLA Y, PÉREZ-NÚÑEZ D, RICHT J A. African swine fever virus biology and vaccine approaches. Advances in Virus Research. Amsterdam: Elsevier, 2018: 41-74.
[9]
WANG Y, KANG W F, YANG W P, ZHANG J, LI D, ZHENG H X. Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: A review. Frontiers in Immunology, 2021, 12: 715582.
[10]
WANG G G, XIE M J, WU W, CHEN Z Z. Structures and functional diversities of ASFV proteins. Viruses, 2021, 13(11): 2124.
[11]
CHEN H, WANG Z Z, GAO X Y, LV J X, HU Y X, JUNG Y S, ZHU S Y, WU X D, QIAN Y J, DAI J J. ASFV pD345L protein negatively regulates NF-κB signalling by inhibiting IKK kinase activity. Veterinary Research, 2022, 53(1): 32.

doi: 10.1186/s13567-022-01050-z pmid: 35461299
[12]
WANG Z Y, AI Q Y, HUANG S L, OU Y T, GAO Y Z, TONG T Z, FAN H Y. Immune escape mechanism and vaccine research progress of African swine fever virus. Vaccines, 2022, 10(3): 344.
[13]
LI L, FU J Y, LI J X, GUO S B, CHEN Q C, ZHANG Y B, LIU Z K, TAN C, CHEN H C, WANG X R. African swine fever virus pI215L inhibits type I interferon signaling by targeting interferon regulatory factor 9 for autophagic degradation. Journal of Virology, 2022, 96(17): e0094422.
[14]
LIU H S, ZHU Z X, FENG T, MA Z, XUE Q, WU P X, LI P, LI S S, YANG F, CAO W J, XUE Z N, CHEN H J, LIU X T, ZHENG H X. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation. Journal of Virology, 2021, 95(18): e0082421.
[15]
CHEN S, ZHANG X H, NIE Y, LI H X, CHEN W G, LIN W C, CHEN F, XIE Q M. African swine fever virus protein E199L promotes cell autophagy through the interaction of PYCR2. Virologica Sinica, 2021, 36(2): 196-206.

doi: 10.1007/s12250-021-00375-x pmid: 33830435
[16]
WANG T, LUO R, ZHANG J, LU Z H, LI L F, ZHENG Y H, PAN L, LAN J, ZHAI H J, HUANG S J, SUN Y, QIU H J. The MGF300-2R protein of African swine fever virus is associated with viral pathogenicity by promoting the autophagic degradation of IKKα and IKKβ through the recruitment of TOLLIP. PLoS Pathogens, 2023, 19(8): e1011580.
[17]
GAO Q, YANG Y L, LUO Y Z, CHEN X N, GONG T, WU D D, FENG Y Z, ZHENG X Y, WANG H, ZHANG G H, LU G, GONG L. African swine fever virus envelope glycoprotein CD2v interacts with host CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. Journal of Virology, 2023, 97(4): e0188922.
[18]
TRAN X H, LE T T P, NGUYEN Q H, DO T T, NGUYEN V D, GAY C G, BORCA M V, GLADUE D P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases, 2022, 69(4): e497-e504.
[19]
王涛, 罗瑞, 孙元, 仇华吉. 非洲猪瘟疫苗的研发策略与应用前景:可行性和可能性. 中国农业科学, 2023, 56(11): 2212-2222. doi: 10.3864/j.issn.0578-1752.2023.11.014.
WANG T, LUO R, SUN Y, QIU H J. Development strategies and application prospects of African swine fever vaccines: Feasibility and Probability. Scientia Agricultura Sinica, 2023, 56(11): 2212-2222. doi: 10.3864/j.issn.0578-1752.2023.11.014. (in Chinese)
[20]
BORCA M V, RAMIREZ-MEDINA E, SILVA E, RAI A, ESPINOZA N, VELAZQUEZ-SALINAS L, GLADUE D P. ASF vaccine candidate ASFV-G-∆I177L does not exhibit residual virulence in long- term clinical studies. Pathogens, 2023, 12(6): 805.
[21]
CHATHURANGA K, LEE J S. African swine fever virus (ASFV): immunity and vaccine development. Vaccines, 2023, 11(2): 199.
[22]
SONG J X, WANG M X, ZHOU L, TIAN P P, SUN Z Y, SUN J R, WANG X N, ZHUANG G Q, JIANG D W, WU Y N, ZHANG G P. A candidate nanoparticle vaccine comprised of multiple epitopes of the African swine fever virus elicits a robust immune response. Journal of Nanobiotechnology, 2023, 21(1): 424.

doi: 10.1186/s12951-023-02210-9 pmid: 37964304
[23]
HUANG L, CHEN W Y, LIU H Y, XUE M D, DONG S Q, LIU X H, FENG C Y, CAO S N, YE G Q, ZHOU Q Q, et al. African swine fever virus HLJ/ 18 CD2v suppresses type I IFN production and IFN- stimulated genes expression through negatively regulating cGMP- AMP synthase-STING and IFN signaling pathways. The Journal of Immunology, 2023, 210(9): 1338-1350.
[24]
LIU X H, CHEN H F, YE G Q, LIU H Y, FENG C Y, CHEN W Y, HU L, ZHOU Q Q, ZHANG Z X, LI J N, et al. African swine fever virus pB318L, a trans-geranylgeranyl-diphosphate synthase, negatively regulates cGAS-STING and IFNAR-JAK-STAT signaling pathways. PLoS Pathogens, 2024, 20(4): e1012136.
[25]
YE G Q, LIU H Y, LIU X H, CHEN W Y, LI J N, ZHAO D M, WANG G, FENG C Y, ZHANG Z X, ZHOU Q Q, et al. African swine fever virus H240R protein inhibits the production of type I interferon through disrupting the oligomerization of STING. Journal of Virology, 2023, 97(9): e0057723.
[26]
ANTONIA R J, HAGAN R S, BALDWIN A S. Expanding the view of IKK: New substrates and new biology. Trends in Cell Biology, 2021, 31(3): 166-178.

doi: 10.1016/j.tcb.2020.12.003 pmid: 33422358
[27]
TAMIMI A, TAMIMI A, SORKHEH F, ASL S M, GHAFARI A, KARIMI A G, ERABI G, POURMONTASERI H, DERAVI N. Monoclonal antibodies for the treatment of squamous cell carcinoma: A literature review. Cancer Reports, 2023, 6(5): e1802.
[28]
JIN J, SIMMONS G. Antiviral functions of monoclonal antibodies against chikungunya virus. Viruses, 2019, 11(4): 305.
[29]
XIANG R, WANG Y, WANG L L, DENG X Q, HUO S S, JIANG S B, YU F. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Current Opinion in Virology, 2022, 53: 101199.
[30]
TSAO L C, FORCE J, HARTMAN Z C. Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Research, 2021, 81(18): 4641-4651.
[1] LIU ChuanXia, CHEN Xin, WANG Xiao, LI XueWen, LI TingTing, WENG ChangJiang, ZHENG Jun. Preparation and Application of Polyclonal Antibodies Against Pig CD1d Protein [J]. Scientia Agricultura Sinica, 2024, 57(8): 1620-1628.
[2] FENG ChunYing, ZHANG ZhaoXia, LIU YunFei, HUANG Li, WENG ChangJiang. Preparation of Monoclonal Antibody Against African Swine Fever Virus p54 Protein and Identification of Its Epitope [J]. Scientia Agricultura Sinica, 2024, 57(19): 3936-3944.
[3] FAN Shuai, ZHONG Han, YANG ZhongYuan, HE WenRui, WAN Bo, WEI ZhanYong, HAN ShiChong, ZHANG GaiPing. African Swine Fever Virus MGF110-5L-6L Induces Host Cell Translation Arrest and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway [J]. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416.
[4] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[5] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[6] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[7] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[8] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[9] TAN YongAn, XIAO LiuBin, HAO DeJun, ZHAO Jing, SUN Yang, BAI LiXin. Preparation of Monoclonal Antibody Against AlEcR-A Protein and Its Response Induced by Exogenous 20-Hydroxyecdysone in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2017, 50(1): 86-93.
[10] ZHAO Xin, GAO Mei-xu, MOU Hui, SHEN Yue, WANG Zhi-dong. Effect on Immunogenicity of Pen a 1 and Its Epitopes Digested by Simulated Gastric Fluid [J]. Scientia Agricultura Sinica, 2015, 48(4): 769-777.
[11] MOU Hui-1, GAO Mei-Xu-1, PAN Jia-Rong-2, ZHI Yu-Xiang-3, ZHAO Jie-1, LIU Chao-Chao-1, LI Shu-Jin-1, ZHAO Xin-1. Selection and Identification of Critical Amino Acids in Epitope 187-202 of Pen a1 [J]. Scientia Agricultura Sinica, 2014, 47(9): 1793-1801.
[12] HUANG Jiao-Ling, XIE Zhi-Xun, XIE Li-Ji, TENG Li-Qiong, HUANG Li, LIU Jia-Bo, PANG Yao-Shan, DENG Xian-Wen, XIE Zhi-Qin, FAN Qing, LUO Si-Si. Nano-Materials-Based Electrochemical Immunosensor for the Detection of Avian Reovirus [J]. Scientia Agricultura Sinica, 2014, 47(5): 1006-1012.
[13] LI Xin-peng, JIANG Jin-qing, QIAN Ai-dong, WANG Zi-liang, FAN Guo-ying, SHAN Xiao-feng, KANG Yuan-huan, LI Yi. Development of an ELISA Method for Multi-Residue Detecting of Fluoroquinolones [J]. Scientia Agricultura Sinica, 2014, 47(23): 4726-2735.
[14] ZHAO Jie-1, GAO Mei-Xu-1, PAN Jia-Rong-2, WANG Zhi-Dong-1, LAN Li-Ping-1, SUI Ke-1, XU Shu-Ting-1, LIU Chao-Chao-1, MOU Hui-1. Preparation and Identification of Polyclonal Antibody of One Pen a1 Epitope Peptide [J]. Scientia Agricultura Sinica, 2013, 46(15): 3191-3198.
[15] ZHANG Xin-Xin, LIU Huan-Qi, LIU Yu-Tian, SUN Cheng-You, CHI Tian-Ying, YU Xiao-Jing, DENG Ming-Yi, WANG Zhi-Liang. Establishment and Optimization of Immunohistochemistry Assay for Detection of Chronic Wasting Disease [J]. Scientia Agricultura Sinica, 2012, 45(15): 3176-3181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!