Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1377-1393.doi: 10.3864/j.issn.0578-1752.2024.07.013

• HORTICULTURE • Previous Articles     Next Articles

Effect of Methyl Jasmonate on Energy Metabolism and Membrane Lipid Metabolism During Resistance to Botryosphaeria dothidea in Kiwifruit

XIAO LiuHua(), KANG NaiHui(), LI ShuCheng, ZHENG ZhiYuan, LUO RaoRao, CHEN JinYin, CHEN Ming, XIANG MiaoLian()   

  1. College of Agronomy, Jiangxi Agricultural University/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province/Jiangxi Key Laboratory for Postharvest Technology and Non-Destructive Testing of Fruits & Vegetables, Nanchang 330045
  • Received:2023-09-13 Accepted:2024-01-30 Online:2024-04-01 Published:2024-04-09
  • Contact: XIANG MiaoLian

Abstract:

【Objective】Soft rot caused by Botryosphaeria dothidea is one of important diseases during kiwifruit storage, which causes serious economic losses for kiwifruit industry. Methyl jasmonate (MeJA) is a kind of biological signal molecule widely existing in plants, which had been found that it could effectively induce kiwifruit’s resistance to B. dothidea in previous studies. In order to further investigate the mechanism of MeJA-mediated resistance to disease in postharvest kiwifruit, the effects of MeJA on energy metabolism and membrane lipid metabolism were analyzed in this study. 【Method】 Hongyang kiwifruit (Actinidia chinensis cv. Hongyang) were used as experiment material and divided into three groups as follows: inoculation group, which the fruits were inoculated with B. dothidea without MeJA treatment; MeJA+inoculation group, which the fruits were fumigated with 0.1 mmol·L-1 MeJA for 24 h then inoculated with B. dothidea; control group, the fruits without MeJA treatment or inoculation with B. dothidea. All fruits were stored in an incubator ((20±1) ℃, 90%-95% relative humidity) for 8 d. The reactive oxygen species (ROS) accumulation was analyzed by 2, 7-dichlorodihydrofluorescein acetoacetate (H2DCFDA) method, malondialdehyde (MDA) content and relative conductivity were also measured. Meanwhile, phospholipase D (PLD), lipase (LPS), lipoxygenase (LOX), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), H+-ATPase, Ca2+-ATPase and cytochrome C oxidase (CCO) activities and the related genes expression were analyzed. The content of Adenosine triphosphate (ATP), Adenosine diphosphate (ADP), Adenosine monophosphate (AMP), oxaloacetic acid and fenugreek acid were determined by high performance liquid chromatography (HPLC). Then the correlation between membrane lipid metabolism and energy metabolism of kiwifruit in inoculation group and MeJA+ inoculation group was analyzed. 【Result】Compared with the inoculated group, MeJA treatment could inhibit the excessive accumulation of ROS in inoculated B. dothidea fruits, slowed down the degree of membrane lipid peroxidation, and effectively decreased PLD, LPS, and LOX activities and the expression levels of AcLOXs, AcPLD and AcLPS. However, MeJA increased the activities of SDH, MDH, H+-ATPase, Ca2+-ATPase and CCO and the transcription levels of AcSDH, AcMDH, AcH+-ATPase, AcCa2+-ATPase and AcCCO, promoted the production of ATP, ADP, oxaloacetic acid and fumaric acid, delayed the decline of fruit energy charge then ensured the energy required for fruit resistance to pathogens. In addition, correlation analysis showed that kiwifruit membrane lipid metabolism was positively correlated with ROS accumulation, but negatively correlated with energy charge. 【Conclusion】The above results indicated that MeJA-induced resistance to B. dothidea in kiwifruit was related to its regulation of fruit energy levels and mitigation of ROS-involved membrane lipid metabolism.

Key words: methyl jasmonate, kiwifruit, Botryosphaeria dothidea, induced resistance, energy metabolism, membrane lipid metabolism

Table 1

Sequences of primers used in this study"

基因 Gene 登录号 Accession number 序列 Primer sequence (5′-3′)
AcActin Ach05g107181 F: GCTTACAGAGGCACCACTCAACC
R: CCGGAATCCAGCACAATACCAG
AcPLD Actinidia10522 F: CCCGACTATGATGTGGAGCC
R: GACCCATCCCTGTTCGTCTG
AcLPS Actinidia27609 F: GTCCGATAAACCGACCGTCT
R: GTCGTACCTCTTTCCGCCTC
AcLOX1 DQ497792.1 F: TCGGGTCAGAGATCAAAAGCA
R: GAAGCCTACGAGACAATCCATCAT
AcLOX2 DQ497797.1 F: TGCCTTACACACTGCTATTTCC
R: AACGACATCCCAAATGAAAAG
AcLOX3 DQ497795.1 F: GTTAGTGCCACGGGCTACGT
R: CATACATGTTCTCGACGATAGAGTTGA
AcLOX4 DQ497793.1 F: GAGAAGGGAGTGGTTTACGTGTGT
R: AACGGAGTATTAAATTGTGCTTGTTG
AcLOX5 DQ497796.1 F: AGTGAATGTGCCATACACTTTGCT
R: ACGAAACCGGAAACCCTTAGA
AcLOX6 DQ497794.1 F: GGGTTGTACCCTATGAGCTTTTGA
R: ATGCGTAAACACACTCGCTTCTC
AcH+-ATPase Actinidia38808 F: TCGGAAAGGATGCTTTGGCT
R: CCATCCATACCAGCACCTCG
AcCa2+-ATPase Actinidia16431 F: GAGGAACCTCTGTGGGGTTG
R: GTCATCACTTTGCGCACCTG
AcSDH Actinidia19180 F: TGAATCGACTGGGGGACGAT
R: TGTGCGAGCGAGTAGGAAAT
AcMDH Actinidia12555 F: AATCCAATCGTCCCTCAGGC
R: GCGATATCGTAGAGGGCGAG
AcCCO Actinidia22368 F: GGAGGAGAGCGTCGAATCAG
R: AAGTCGAGTGTTGGGACGAC

Fig. 1

Effect of MeJA on ROS accumulation levels in kiwifruit Bar=500 μm in Figure A. Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

Effects of MeJA on MDA and relative electrolyte leakage of kiwifruit"

Fig. 3

Effects of MeJA on the activities of enzymes related to membrane lipid metabolism (PLD, LPS, and LOX) in kiwifruit"

Fig. 4

Effects of MeJA on ATP, ADP and AMP content and the energy level in kiwifruit"

Fig. 5

Effects of MeJA on fumaric acid and oxaloacetic acid in kiwifruit"

Fig. 6

Effects of MeJA on the activities of enzymes related to energy metabolism (SDH, MDH, H+-ATPase, Ca2+-ATPas, and CCO) in kiwifruit"

Fig. 7

Effects of MeJA on the expression of genes related to membrane lipid metabolism in kiwifruit"

Fig. 8

Effect of MeJA on the expression of genes related to energy metabolism in kiwifruit"

Fig. 9

Correlation analysis of fruit membrane lipid metabolism and energy metabolism indicators A: Correlation analysis of inoculation group; B: Correlation analysis of MeJA+inoculation group. The red and blue colors represent positive and negative correlations, respectively. *: P<0.05; *: P<0.01; ***: P<0.001"

Fig. 10

Mechanism of action of MeJA-induced kiwifruit disease resistance with membrane lipid metabolism and energy metabolism in the figure indicate the higher level in comparison; in the figure indicate the lower level in comparison"

[1]
BLANCH M, ÁLVAREZ I, SANCHEZ-BALLESTA M T, ESCRIBANO M I, MERODIO C. Involvement of fatty acids in the response to high CO2 and low temperature in harvested strawberries. Postharvest Biology and Technology, 2019, 147: 196-205.

doi: 10.1016/j.postharvbio.2018.10.001
[2]
XIA X J, ZHOU Y H, SHI K, ZHOU J, FOYER C H, YU J Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 2015, 66(10): 2839-2856.

doi: 10.1093/jxb/erv089
[3]
APEL K, HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399.

pmid: 15377225
[4]
王静, 孙广宇, 姬俏俏, 柳泽浩, 郝晶, 魏亚. 活性氧在果蔬采后衰老过程中的作用及其控制. 包装与食品机械, 2015, 33(5): 51-54, 58.
WANG J, SUN G Y, JI Q Q, LIU Z H, HAO J, WEI Y. The role of active oxygen in harvested fruits and vegetables during senescence and its control. Packaging and Food Machinery, 2015, 33(5): 51-54, 58. (in Chinese)
[5]
许佳妮, 曹琦, 邓丽莉, 姚世响, 王威浩, 曾凯芳. 低成熟度柑橘果实油胞病发病进程中的膜脂代谢. 食品科学, 2016, 37(24): 262-270.

doi: 10.7506/spkx1002-6630-201624042
XU J N, CAO Q, DENG L L, YAO S X, WANG W H, ZENG K F. Mechanisms of membrane lipid metabolism in Citrus fruit at low ripening stage in response to oleocellosis. Food Science, 2016, 37(24): 262-270. (in Chinese)
[6]
赵风云, 程志虹, 谭强飞, 朱嘉宁, 孙万合, 张紊玮, 贠建民. 甘露醇对草菇继代菌株生产性状和ROS清除能力的影响. 中国农业科学, 2024, 57(1): 190-203. doi: 10.3864/j.issn.0578-1752.2024.01.013.
ZHAO F Y, CHENG Z H, TAN Q F, ZHU J N, SUN W H, ZHANG W W, YUN J M. Effects of mannitol on production characteristics and ROS scavenging ability of Volvariella volvacea subcultured strains. Scientia Agricultura Sinica, 2024, 57(1): 190-203. doi: 10.3864/j.issn.0578-1752.2024.01.013. (in Chinese)
[7]
王静. 能量亏缺对果蔬采后组织衰老、褐变与病害的影响. 保鲜与加工, 2020, 20(1): 237-242.
WANG J. Effects of energy deficiency on tissue senescence, browning and diseases of postharvest fruits and vegetables. Storage and Process, 2020, 20(1): 237-242. (in Chinese)
[8]
RICHTER C, SCHWEIZER M, COSSARIZZA A, FRANCESCHI C. Control of apoptosis by the cellular ATP level. FEBS Letters, 1996, 378(2): 107-110.

doi: 10.1016/0014-5793(95)01431-4 pmid: 8549813
[9]
蒋跃明, 王慧, 易春, 屈红霞, 段学武. 采后园艺产品能量代谢与调控的研究进展. 广州大学学报(自然科学版), 2016, 15(4): 1-7.
JIANG Y M, WANG H, YI C, QU H X, DUAN X W. Advance in energy generation and control of harvested horticultural crop. Journal of Guangzhou University (Natural Science Edition), 2016, 15(4): 1-7. (in Chinese)
[10]
CHEN Y H, LIN H T, JIANG Y M, ZHANG S, LIN Y F, WANG Z H. Phomopsis longanae Chi-induced pericarp browning and disease development of harvested Longan fruit in association with energy status. Postharvest Biology and Technology, 2014, 93: 24-28.

doi: 10.1016/j.postharvbio.2014.02.003
[11]
高兆银, 赵超, 胡美姣, 李敏, 李焕苓, 王果, 孙进华, 王家保. 能量供应对‘南岛无核’荔枝果实采后能量代谢及衰老的影响. 热带作物学报, 2018, 39(2): 254-259.
GAO Z Y, ZHAO C, HU M J, LI M, LI H L, WANG G, SUN J H, WANG J B. Effects of energy supply on energy metabolism and postharvest senescence of ‘Nandao Wuhe’ Litchi fruit. Chinese Journal of Tropical Crops, 2018, 39(2): 254-259. (in Chinese)
[12]
SAQUET A A, STREIF J, BANGERTH F. Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storage. Postharvest Biology and Technology, 2003, 30(2): 123-132.

doi: 10.1016/S0925-5214(03)00099-1
[13]
陈发河, 张美姿, 吴光斌. NO处理延缓采后枇杷果实木质化劣变及其与能量代谢的关系. 中国农业科学, 2014, 47(12): 2425-2434. doi: 10.3864/j.issn.0578-1752.2014.12.015.
CHEN F H, ZHANG M Z, WU G B. Study of lignification’s delaying and its relationship with energy metabolism in loquat fruits after nitric oxide fumigation. Scientia Agricultura Sinica, 2014, 47(12): 2425-2434. doi: 10.3864/j.issn.0578-1752.2014.12.015. (in Chinese)
[14]
李生娥. 采后BTH处理及挑战接种对苹果果实抗青霉病的诱导[D]. 兰州: 甘肃农业大学, 2017.
LI S E. Induces resistance against blue mould of apple fruit by postharvest BTH treatment and challenged inoculation[D]. Lanzhou: Gansu Agricultural University, 2017. (in Chinese)
[15]
WANG J, CAO S F, WANG L, WANG X L, JIN P, ZHENG Y H. Effect of β-aminobutyric acid on disease resistance against Rhizopus rot in harvested peaches. Frontiers in Microbiology, 2018, 9: 1505.

doi: 10.3389/fmicb.2018.01505
[16]
张正敏, 杨艺琳, 李美琳, 王静, 季娜娜, 郑永华. 2,4-表油菜素内酯处理对桃果实软腐病及能量代谢的影响. 食品科学, 2019, 40(5): 207-213.

doi: 10.7506/spkx1002-6630-20180828-312
ZHANG Z M, YANG Y L, LI M L, WANG J, JI N N, ZHENG Y H. Effect of 2,4-epibrassinolide treatment on Rhizopus rot and energy metabolism in postharvest peach fruit. Food Science, 2019, 40(5): 207-213. (in Chinese)

doi: 10.1111/jfds.1975.40.issue-1
[17]
JIN P, ZHU H, WANG J, CHEN J J, WANG X L, ZHENG Y H. Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. Journal of the Science of Food and Agriculture, 2013, 93(8): 1827-1832.

doi: 10.1002/jsfa.5973 pmid: 23208649
[18]
WANG H B, CHENG X, WU C E, FAN G J, LI T T, DONG C. Retardation of postharvest softening of blueberry fruit by methyl jasmonate is correlated with altered cell wall modification and energy metabolism. Scientia Horticulturae, 2021, 276: 109752.

doi: 10.1016/j.scienta.2020.109752
[19]
LI S C, XIAO L H, CHEN M, CAO Q, LUO Z Y, KANG N H, JIA M S, CHEN J Y, XIANG M L. The involvement of the phenylpropanoid and jasmonate pathways in methyl jasmonate-induced soft rot resistance in kiwifruit (Actinidia chinensis). Frontiers in Plant Science, 2022, 13: 1097733.

doi: 10.3389/fpls.2022.1097733
[20]
PAN L Y, ZHAO X Y, CHEN M, FU Y Q, XIANG M L, CHEN J Y. Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit. Food Chemistry, 2020, 305: 125483.

doi: 10.1016/j.foodchem.2019.125483
[21]
王迪. 高二氧化碳处理调控鲜切梨果实品质机制的研究[D]. 杭州: 浙江大学, 2020.
WANG D. Regulatory mechanism of high carbon dioxide treatment on quality of fresh-cut pears[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[22]
曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2007.
CAO J K, JIANG W B, ZHAO Y M. Guidance on Postharvest Physiological and Biochemical Experiments of Fruits and Vegetables. Beijing: China Light Industry Press, 2007. (in Chinese)
[23]
CAO S F, YANG Z F, CAI Y T, ZHENG Y H. Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Food Chemistry, 2011, 127(4): 1777-1783.

doi: 10.1016/j.foodchem.2011.02.059
[24]
LIU H, SONG L L, YOU Y L, LI Y B, DUAN X W, JIANG Y M, JOYCE D C, ASHRAF M, LU W J. Cold storage duration affects litchi fruit quality, membrane permeability, enzyme activities and energy charge during shelf time at ambient temperature. Postharvest Biology and Technology, 2011, 60(1): 24-30.

doi: 10.1016/j.postharvbio.2010.11.008
[25]
ZHANG S, LIN Y Z, LIN H T, LIN Y X, CHEN Y H, WANG H, SHI J, LIN Y F. Lasiodiplodia theobromae (Pat.) Griff. & Maubl.-induced disease development and pericarp browning of harvested Longan fruit in association with membrane lipids metabolism. Food Chemistry, 2018, 244: 93-101.

doi: 10.1016/j.foodchem.2017.10.020
[26]
LI S G, JIANG H, WANG Y, L, PRUSKY D, JI Y, ZHENG X L, BI Y. Effect of benzothiadiazole treatment on improving the mitochondrial energy metabolism involved in induced resistance of apple fruit during postharvest storage. Food Chemistry, 2020, 302: 125288.

doi: 10.1016/j.foodchem.2019.125288
[27]
张雷. 基于蛋白质组学的冷藏南果梨香气变淡机制及其调控研究[D]. 沈阳: 沈阳农业大学, 2018.
ZHANG L. Proteomic analysis of aroma fading mechanisms of ‘Nanguo’ pears after refrigeration and regulation of aroma fading[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[28]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262 pmid: 11846609
[29]
WANG Y, JI D C, CHEN T, LI B Q, ZHANG Z Q, QIN G Z, TIAN S P. Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit-pathogen interactions. International Journal of Molecular Sciences, 2019, 20(12): 2994.
[30]
张培岭, 白羽嘉, 黄伟, 黄瑜, 王迪, 冯作山. 不同浓度外源水杨酸对甜瓜果实抗病相关酶活性的影响. 食品科技, 2016, 41(7): 38-43.
ZHANG P L, BAI Y J, HUANG W, HUANG Y, WANG D, FENG Z S. Effect of salicylic acid on disease resistance-related enzyme activity in Muskmelon fruit. Food Science and Technology, 2016, 41(7): 38-43. (in Chinese)
[31]
GE Y H, WEI M L, LI C Y, CHEN Y R, J Y, MENG K, WANG W H, LI J R. Reactive oxygen species metabolism and phenylpropanoid pathway involved in disease resistance against Penicillium expansum in apple fruit induced by ϵ-poly-l-lysine. Journal of the Science of Food and Agriculture, 2018, 98(13): 5082-5088.

doi: 10.1002/jsfa.2018.98.issue-13
[32]
WEI M L, GE Y H, LI C Y, HAN X, QIN S C, CHEN Y R, TANG Q, LI J R. G6PDH regulated NADPH production and reactive oxygen species metabolism to enhance disease resistance against blue mold in apple fruit by acibenzolar-S-methyl. Postharvest Biology and Technology, 2019, 148: 228-235.

doi: 10.1016/j.postharvbio.2018.05.017
[33]
向妙莲, 吴帆, 李树成, 马巧利, 王印宝, 肖刘华, 陈金印, 陈明. 外源褪黑素调控活性氧代谢诱导梨果实抗采后黑斑病. 园艺学报, 2022, 49(5): 1102-1110.

doi: 10.16420/j.issn.0513-353x.2021-0159
XIANG M L, WU F, LI S C, MA Q L, WANG Y B, XIAO L H, CHEN J Y, CHEN M. Exogenous melatonin regulates reactive oxygen metabolism to induce resistance of postharvest pear fruit to black spot. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-0159
[34]
唐燕, 张继澍. 机械损伤对猕猴桃果实生理与膜脂过氧化的影响. 中国食品学报, 2012, 12(4): 140-145.
TANG Y, ZHANG J S. Influnce of damages on kiwifruits of physiological index and membrane lipid peroxidation. Journal of Chinese Institute of Food Science and Technology, 2012, 12(4): 140-145. (in Chinese)
[35]
SUN H J, ZHOU X, ZHOU Q, ZHAO Y B, KONG X M, LUO M L, JI S J. Disorder of membrane metabolism induced membrane instability plays important role in pericarp browning of refrigerated ‘Nanguo’ pears. Food Chemistry, 2020, 320: 126684.

doi: 10.1016/j.foodchem.2020.126684
[36]
LIN Y F, LIN H T, LIN Y X, ZHANG S, CHEN Y H, JIANG X J. The roles of metabolism of membrane lipids and phenolics in hydrogen peroxide-induced pericarp browning of harvested Longan fruit. Postharvest Biology and Technology, 2016, 111: 53-61.

doi: 10.1016/j.postharvbio.2015.07.030
[37]
SHI F, ZHOU X, ZHOU Q, TAN Z, YAO M M, WEI B D, JI S J. Membrane lipid metabolism changes and aroma ester loss in low-temperature stored Nanguo pears. Food Chemistry, 2018, 245: 446-453.

doi: S0308-8146(17)31727-2 pmid: 29287394
[38]
CHEN Y Z, YU J, LIN H T, LIN M S, LIN Y Z, ZHENG Y, LIN Y F. Membrane lipids metabolism participates in the pulp breakdown of fresh Longan caused by Phomopsis longanae Chi. Postharvest Biology and Technology, 2022, 193: 112049.

doi: 10.1016/j.postharvbio.2022.112049
[39]
LI X, LI C Y, CHENG Y, HOU J B, ZHANG J H, GE Y H. Postharvest application of acibenzolar-S-methyl delays the senescence of pear fruit by regulating reactive oxygen species and fatty acid metabolism. Journal of Agricultural and Food Chemistry, 2020, 68(17): 4991-4999.

doi: 10.1021/acs.jafc.0c01031
[40]
ZHANG L, WANG J W, ZHOU B, LI G D, LIU Y F, XIA X L, XIAO Z G, FEI L, JI S J. Calcium inhibited peel browning by regulating enzymes in membrane metabolism of ‘Nanguo’ pears during post-ripeness after refrigerated storage. Scientia Horticulturae, 2019, 244: 15-21.

doi: 10.1016/j.scienta.2018.09.030
[41]
TAO D B, WANG J W, ZHANG L, JIANG Y G, M. 1-Methylcyclopropene alleviates peel browning of ‘Nanguo’ pears by regulating energy, antioxidant and lipid metabolisms after long term refrigeration. Scientia Horticulturae, 2019, 247: 254-263.

doi: 10.1016/j.scienta.2018.12.025
[42]
BAYLEY J, MERRETT M J. Adenosine triphosphate concentration in relation to respiration and resistance to infection in tissues infected by virus. New Phytologist, 1969, 68(2): 257-263.

doi: 10.1111/nph.1969.68.issue-2
[43]
CAO S F, CAI Y T, YANG Z F, JOYCE D C, ZHENG Y H. Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit. Food Chemistry, 2014, 145: 86-89.

doi: 10.1016/j.foodchem.2013.08.019 pmid: 24128452
[44]
SCHERTL P, BRAUN H P. Respiratory electron transfer pathways in plant mitochondria. Frontiers in Plant Science, 2014, 5: 163.

doi: 10.3389/fpls.2014.00163 pmid: 24808901
[45]
MINÁRIK P, TOMÁSKOVÁ N, KOLLÁROVÁ M, ANTALÍK M. Malate dehydrogenases: Structure and function. General Physiology and Biophysics, 2002, 21(3): 257-265.
[46]
HORSEFIELD R, YANKOVSKAYA V, SEXTON G, WHITTINGHAM W, SHIOMI K, OMURA S, BYRNE B, CECCHINI G, IWATA S. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): A mechanism of electron transfer and proton conduction during ubiquinone reduction. The Journal of Biological Chemistry, 2006, 281(11): 7309-7316.

doi: 10.1074/jbc.M508173200
[47]
GE Y H, WEI M L, LI C Y, CHEN Y R, LV J Y, LI J R. Effect of acibenzolar-S-methyl on energy metabolism and blue mould of Nanguo pear fruit. Scientia Horticulturae, 2017, 225: 221-225.

doi: 10.1016/j.scienta.2017.07.012
[48]
SUN L, LUO S F, HU H L, ZHOU H S, ZHANG Y T, AN R H, LING J, LI P X. Melatonin promotes the normal cellular mitochondrial function of lotus seeds through stimulating nitric oxide production. Postharvest Biology and Technology, 2022, 185: 111814.

doi: 10.1016/j.postharvbio.2021.111814
[49]
LIN Y F, CHEN M Y, LIN H T, HUNG Y C, LIN Y X, CHEN Y H, WANG H, SHI J. DNP and ATP induced alteration in disease development of Phomopsis longanae Chi-inoculated Longan fruit by acting on energy status and reactive oxygen species production- scavenging system. Food Chemistry, 2017, 228: 497-505.

doi: 10.1016/j.foodchem.2017.02.045
[50]
YI C, JIANG Y M, SHI J, QU H X, XUE S, DUAN X W, SHI J Y, PRASAD N K. ATP-regulation of antioxidant properties and phenolics in litchi fruit during browning and pathogen infection process. Food Chemistry, 2010, 118(1): 42-47.

doi: 10.1016/j.foodchem.2009.04.074
[1] HUANG Hao, WU QingHong, ZHANG Yu, WANG Ye, LIU QingE, FANG YiDa, LUO ZiSheng. Effects of Novel Phase Change Coolant on the Postharvest Quality of Shiitake Mushrooms [J]. Scientia Agricultura Sinica, 2024, 57(5): 989-999.
[2] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[6] LI WenJuan,TAO Hui,ZHANG NaiFeng,MA Tao,DIAO QiYu. Effects of High-Fat Diet on Energy Metabolism and Slaughter Performance of Early-Weaning Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2206-2216.
[7] Qi FENG,ChaoZheng LI,GuiTian GAO,You WU,Yan XIAO,WuQi ZHAO,YuShan LEI. Influence of Three Enzymes on Oxidation of Ascorbic Acid in Postharvest 'Hayward' and 'Huate' Kiwifruit [J]. Scientia Agricultura Sinica, 2020, 53(4): 811-822.
[8] MA Ning,WANG HeTong,FANG DongLu,ZHAO LiYan,YANG WenJian,PEI Fei,HU QiuHui. Nano-Packaging Preservative Mechanism of Flammulina filiformis After Harvest Based on Mitochondrial Energy Status Pathways [J]. Scientia Agricultura Sinica, 2020, 53(16): 3356-3371.
[9] ZENG XiangYuan,ZHAO WuQi,LU Dan,WU Ni,MENG YongHong,GAO GuiTian,LEI YuShan. Effects of Ultrasound on the Sugar Permeability Effect, Drying Energy Consumption and Quality of Kiwifruit Slices [J]. Scientia Agricultura Sinica, 2019, 52(4): 725-737.
[10] LU Dan,ZHAO WuQi,ZENG XiangYuan,WU Ni,GAO GuiTian,ZHANG QingAn,ZHANG BaoShan,LEI YuShan. The Correlation Between the Stress Relaxation Characteristics and the Quality of ‘Haiwode’ Kiwifruit [J]. Scientia Agricultura Sinica, 2019, 52(14): 2548-2558.
[11] XU YueYuan, QI XiaoLong, HOU Ye, ZHAO YunXia, LUAN Yu, ZHOU HuanHuan, ZHAO ShuHong, LI XinYun. Comparison Study of Differential Expression Genes and cis-NATs of Skeletal Muscle Between Lantang and Landrace Pig [J]. Scientia Agricultura Sinica, 2018, 51(9): 1795-1805.
[12] LIN KaiLi, HUANG Qi, HUANG QiHui, JIN ZhenLiang, JIANG TianJia, ZHENG XiaoLin. Browning Inhibition and Energy Metabolism Mechanism of  Agaricus bisporus by Ergothioneine Treatment [J]. Scientia Agricultura Sinica, 2018, 51(8): 1568-1576.
[13] ZHANG Cheng, WANG QiuPing, ZHOU KaiTuo, WU XiaoMao, LONG YouHua, LI JiaoHong, YIN XianHui. Effects of Intercropping Reineckia Carnea on Soil Enzyme Activity and Kiwifruit Fruit Yield, Quality in Kiwifruit Orchard [J]. Scientia Agricultura Sinica, 2018, 51(8): 1556-1567.
[14] QianQian ZHOU,HuaRong QIU,XiaoWen HE,XianPu WANG,XiuXia LIU,BaoHua LI,ShuJing WU,XueSen CHEN. MdWRKY40 Mediated Improvement of the Immune Resistance of Apple and Arabidopsis thaliana to Botryosphaeria dothidea [J]. Scientia Agricultura Sinica, 2018, 51(21): 4052-4064.
[15] XiaoXia CUI, HongMei SHU, Lu JIANG, XiaoLan HE, YuanYong GONG, WanChao NI, ShuQiao GUO. Identification of Pathogens Causing Brown Spot and the Role of MeJA in Disease Resistance in Stevia rebaudiana [J]. Scientia Agricultura Sinica, 2018, 51(18): 3520-3530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!