Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (11): 2103-2112.doi: 10.3864/j.issn.0578-1752.2016.11.007

• PLANT PROTECTION • Previous Articles     Next Articles

Induced Resistance by Polysaccharides Isolated from Ganoderma lucidum in Tomato Against Gray Mold

NING Yu-bo1, WANG Hong-yan2, QIAO Kang1, LIU Xiu-mei1, WANG Kai-yun1   

  1. 1College of Plant Protection, Shandong Agriculture University, Tai’an 271018, Shandong
    2Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2016-01-25 Online:2016-06-01 Published:2016-06-01

Abstract: 【Objective】The systemic long-lasting and broad-spectrum resistance was induced with natural or synthetic compounds. The objective of this study is to investigate the induced resistant effect of polysaccharide extracted from the fruiting body of Ganoderma lucidum (GLP) in tomato against gray mold.【Method】The 1-2 true leaf of tomato plants were sprayed with polysaccharides (50, 100, 200 and 400 mg·L-1)for 3 times once every 2 days and inoculated spore suspension of Botrytis cinerea after 2 days later of the last time GLP treatment ((1-2)×106 spores/mL), meanwhile, the plants treated with the same volume of distilled water used as control instead of GLP solution and inoculated spore suspension of B. cinerea. A syringe stabbed the stem of tomato plant before inoculated spore suspension. Covering plastic film in order to moisturize 24 h and keeping humidity the 2 days of inoculating spore suspension of B. cinerea, the greenhouse relative humidity was not less than 90% and temperature was (15±5) ℃, normal light was recovered 3 days later. The disease index and disease reduction against gray mold in tomato plants was investigated. Simultaneously, the tomato seedlings were soaked in the concentration (50, 100, 200 and 400 mg·L-1) of polysaccharides and then cultivated in pots. The germination rate, root length and plant height, shoot weight, fresh weight of tomato seedlings were measured 20 days after treatment with polysaccharides. 【Result】Compared with the clear water control’s disease index 49.25, the GLP treatment groups’ disease index were between with 32.96-43.85, significantly reduced, it was found that the lowest disease index 32.96 at the concentration of 400 mg·L-1 GLP treatment and the disease reduction was 33.07%. The activity of protective enzyme in leaves showed different dynamic changes after GLP treatment, catalase (CAT) and polyphenoloxidase (PPO) activities remarkably increased, and the activities reached the highest peak after 3 days of induction. The highest CAT (162 U·min-1·g-1 FW) and PPO (98 U·min-1·g-1 FW) were 2.13 and 1.71 times compared with the control group, respectively. Peroxidase (POD) activity reached the highest peak after 4 days of induction then decreased gradually, significantly higher than the control. The highest POD (434 U·min-1·g-1 FW) was 3.29 times compared with the control groups. MDA content after application of GLP showed a down trend compared to that of control. When the seed was treated with polysaccharides, the germination rate, root length and plant height, shoot weight, root weight of tomato seedlings all increased to a certain degree. The treatment at the concentration of 200 mg·L-1 GLP showed the highest germination rate 87.3%, 10.0% higher than the control group germination rate 77.3%. Simultaneously, the treatment at the concentration of 200 mg·L-1 GLP showed the highest promotion in the tomato plant height and shoot weight, enhanced 12.9% and 33.3% respectively than the control. The tomato seed germinal length and root weight enhanced 0.16 cm and 0.33 g respectively than the control at the concentration of 100 mg·L-1 GLP.【Conclusion】GLP at appropriate concentration had the ability to induce systematic resistance against gray mold. In addition, GLP promoted the growth of tomato seedlings.

Key words: Ganoderma lucidum polysaccharides, tomato, gray mold, induced resistance, defensive enzymes

[1]    Romanazzi G, Smilanick J L, Feliziani E, Droby S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology, 2016, 113: 69-76.
[2]    Chai A L, Xie X W, Shi Y X, Wang H J, Li B J. Grey mould caused by Botrytis cinerea on greenhouse-grown fennel in China. Canadian Journal of Plant Pathology, 2015, 37(2): 237-241.
[3]    李保聚, 朱国仁, 赵奎华, 乔勇. 番茄灰霉病在果实上的侵染部位及防治新技术. 植物病理学报, 1999, 29(1): 64-68.
Li B J, Zhu G R, Zhao K H, Qiao Y. Infection gates of grey mould of tomato fruits and a new technique for its controlling. Acta Phytopathologica Sinica, 1999, 29(1): 64-68. (in Chinese)  
[4]    Cao Y, Wu S H, Dai Y C. Species clarification of the prize medicinal ganoderma mushroom “Lingzhi”. Fungal Diversity, 2012, 56(1): 49-62.
[5]    Habijanic J, Berovic M, Boh B, Plankl M, Wraber B. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-α, IL-12, IFN-γ, IL-2, IL-4, IL-10 and IL-17. New Biotechnology, 2015, 32(1): 85-95.
[6]    何晋浙, 邵平, 孟祥河, 孙培龙. 灵芝多糖的结构特征分析. 分析化学, 2010, 38(3): 372-376.
He J Z, Shao P, Meng X H, SuN P L. Analysis of structural characteristics of polysaccharide from Ganoderma lucidum. Chinese Journal of Analytical Chemistry, 2010, 38(3): 372-376. (in Chinese)
[7]    Wang J, Yuan Y, Yue T. Immunostimulatory activities of β-D-glucan from Ganoderma lucidum. Carbohydrate Polymers, 2014, 102: 47-54.
[8]    SASAKI T, TAKASUKA N. Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes. Carbohydrate Research, 1976, 47(1): 99-104.
[9]    王杰, 王开运, 张骞, 朱玉坤, 姜莉莉. 海带多糖对烟草花叶病毒的抑制作用及其对烟草酶活性的影响. 植物保护学报, 2011, 38(6): 532-538.
Wang J, Wang K Y, Zhang Q, Zhu Y K, Jiang L L. Inhibition of laminarin against TMV and effect on protective enzymes in tobacco. Acta Phytophylacica Sinica, 2011, 38(6): 532-538. (in Chinese)
[10]   张文清, 夏玮, 程俞, 张元兴. 不同分子量壳多糖对植物病菌的拮抗作用及其诱导提高寄主植物抗病性. 植物保护学报, 2004, 31(3): 235-240.
Zhang W Q, Xia W, Cheng Y, Zhang Y X. Bacteriostatic effect of chitosans with different molecular weights to phytopathogenic fungic and inducing defense responses. Acta Phytophylacica Sinica, 2004, 31(3): 235-240. (in Chinese)
[11]   Wang J, Wang H Y, Xia X M, Li P P, Wang K Y. Synergistic effect of Lentinula edodes and Pichia membranefaciens on inhibition of Penicillium expansum infections. Postharvest Biology and Technology, 2013, 81: 7-12.
[12]   王文霞, 赵小明, 杜昱光, 尹恒. 寡糖生物防治应用及机理研究进展. 中国生物防治学报, 2015, 31(5): 757-769.
Wang W X, Zhao X M, Du Y G, Yin H. Progress on application and mechanism of oligosaccahrides in plant biocontrol response. Chinese Journal of Biological Control, 2015, 31(5): 757-769. (in Chinese)
[13]   Gokce E C, Kahveci R, Atanur O M, Gürer B, Aksoy N, Gokce A, Sargon M F, Cemil B, Erdogan B, Kahveci O. Neuroprotective effects of ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats. Injury, 2015, 46(11): 2146-2155.
[14]   Liu Z G, Xing J, Huang Y, Bo R N, Zheng S S, Luo L, Niu Y L, Zhang Y, Hu Y L, Liu J G, Wu Y, Wang D Y. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages. International journal of Biological Macromolecules, 2016, 82: 973-978.
[15]   白丹, 常迺滔, 李大海, 刘继霞, 尤雪颜. 灵芝多糖抑菌活性初探. 华北农学报, 2008, 23(增刊): 282-285.
Bai D, Chang N T, Li D H, Liu J X, You X Y. Antiblastic activitiy of ganoderma lucidum polysaccharides. Acta Agriculturae Boreali-sinica, 2008, 23(S1): 282-285. (in Chinese)
[16]   陆家云, 佘长夫, 鞠理红, 方中达.江苏省棉花黄萎病菌(Verticillium dahliae) 致病力的分化.南京农学院学报, 1983, 6(1): 36-43.
Lu J Y, She C F, Ju L H, Fang Z D. Studies on differentiation of the Verticillium dahliae Kleb. in Jiangsu Province. Journal of Nanjing Agricultural College, 1983, 6(1): 36-43. (in Chinese)
[17]   刘太国, 石延霞, 文景芝, 李永镐. 水杨酸诱导烟草对TMV的抗性和PAL活性变化研究. 植物病理学报, 2003, 33(2): 190-191.
Liu T G, Shi Y X, Wen J Z, Li Y H. Changes of the PAL activity and induced resistance to TMV in tobacco treated with SA and inoculated with TMV. Acta Phytopathologica Sinica, 2003, 33(2): 190-191. (in Chinese)
[18]   邹琦. 植物生理生化试验指导. 北京: 中国农业出版社, 1995.
Zou Q. Experimental Guidance of Plant Physiology and Biochemistry. Beijing: China Agriculture Press, 1995. (in Chinese)
[19]   王锋, 高仁君, 李健强, 吴学宏, 耿平田. 醚唑种衣剂对小麦幼苗生长及抗病性相关酶活性的影响. 植物病理学报, 2000, 30(3): 213-216.
Wang F, Gao R J, Li J Q, Wu X H, Geng P T. Effect of difenoconazole on the growth and activities of disease resistance- related enzymes in wheat seedlings from treated seeds. Acta Phytopathologica Sinica, 2000, 30(3): 213-216. (in Chinese)
[20]   郝再彬, 苍晶, 徐仲. 植物生理实验. 哈尔滨: 哈尔滨工业大学出版社, 2004.
Hao Z B, Cang J, Xu Z. Plant Physiology Experiment. Harbin: Harbin Institute of Technology Press, 2004. (in Chinese)
[21]   李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
Li H S. The Experiment Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. (in Chinese)
[22]   彭运生, 刘恩. 关于提取叶绿素方法的比较研究. 北京农业大学学报, 1992, 18(3): 247-250.
Peng Y S, Liu E. The comparative study of chlorophyll extraction method. Acta Agriculturae Universitatis Pekinensis, 1992, 18(3): 247-250. (in Chinese)
[23]   Ryan C A. Oligosaccharide signals: from plant defense to parasite offense. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(1): 1-2.
[24]   朱英波, 史凤玉, 张瑞敬, 吴楠, 宋士青. 壳寡糖和钕复合处理诱导黄瓜对枯萎病的抗性. 中国生物防治学报, 2014, 30(4): 528-533.
Zhu Y B, Shi F Y, Zhang R J, Wu N, Song S Q. Effects of chitosan oligosaccharides in combination with neodymium on resistance of cucumbers to fusarium wilts. Chinese Journal of Biological Control, 2014, 30(4): 528-533. (in Chinese)
[25]   He P Q, Tian L, Chen K S, Hao L H, Li G Y. Induction of volatile organic components of Lycopersicon esculentum Mill. and its resistance to Botrytis cinerea Pers. by burdock oligosaccharise. Journal of Integrative Plant Biology, 2006, 48(5): 550-557.
[26]   Wang J, Wang H Y, Xia X M, Li P P, Wang K Y. Inhibitory effects of sulfated lentinan and lentinanagainst Tobacco mosaic virus (TMV) in tobacco seedings. International Journal of Biological   Macromolecules, 2013, 61: 264-269.
[27]   侯艳杰, 刘娜, 李翠香, 卫雁南. 牛蒡寡糖诱导对小麦白粉病抗性的影响. 麦类作物学报, 2009, 29(3): 540-542.
Hou Y J, Liu N, Li C X, Wei Y N. Effect of induction by burdock oligosaccharide on powdery mildew resistance in wheat. Journal of Triticeae Crops, 2009, 29(3): 540-542. (in Chinese)
[28]   Park M S, Go P G, Choi Y K, An K W, Choi C Y. Characterization and mRNA expression of Mn-SOD and physiological responses to stresses in the Pacific oyster Crassostrea gigas. Marine Biology Research, 2009, 5(5): 451-461.
[29]   Buronatuio R, Torre D G, Montalbini P. Soluble superoxide dismutase (SOD) in susceptible and resistant host-parasite complexes of Phaseolus vulgaris and Uromyces phaseoli. Physiological and Molecular Plant Pathology, 1987, 31: 173-184.
[30]   Li Y N, Hou L G, Qi C Y, Sun H J, Liu L, Sui P J, Guo X M, Zhao G C. Effects of different levels of phosphorus nutrient on the photosynthesis characteristic of rice flag leaf. Agricultural Science & Technology, 2010, 11(6): 11-14.
[31]   Mishra B B, Gautam S, Sharma A. Purification and characterisation of polyphenol oxidase (PPO) from eggplant (Solanum melongena). Food Chemistry, 2012, 134(4): 1855-1861.
[32]   Song M Z, Fan S L, Pang C Y, Wei H L, Yu S X. Genetic analysis of the antioxidant enzymes, methane dicarboxylic aldehyde (MDA) and chlorophyll content in leaves of the short season cotton (Gossypium hirsutum L.). Euphytica, 2014, 198(1): 153-162.
[33]   翟彩霞, 马春红, 王立安, 陈霞, 郭秀林, 崔四平, 李广敏. 玉米在诱导抗病过程中丙二醛 (MDA) 含量的变化. 玉米科学, 2005, 13(1): 77-78, 82.
Zhai C X, Ma C H, Wang L A, Chen X, Guo X L, Cui S P, Li G M. The changes of malondialdenyde concentration of the induced disease-resistance. Journal of Maize Sciences, 2005, 13(1): 77-78, 82. (in Chinese)
[34]   孙翠红, 徐翠莲, 赵铭钦, 黄元炯, 黄海棠, 朱金峰. 壳寡糖衍生物纳米银微粒诱导烟株产生TMV 抗性. 中国烟草学报, 2015, 21(6): 59-64.
SuN C H, Xu C L, Zhao M Q, Huang Y J, Huang H T, Zhu J F. Study on TMV resistance of tobacco plants induced by chitosan oligosaccharide derivatives silver nanoparticles. Acta Tabacaria Sinica, 2015, 21(6): 59-64. (in Chinese)
[35]   Srivastava A, Strasser R J, Govindjee. Differential effects of dimethylbenzoquinone and dichlorobenzoquinone on chlorophyll fluorescence transient in spinach thylakoids. Journal of Photochemistry& Photobiology B Biology, 1995, 31(3): 163-169.
[36]   Liu Y J, Du J L, Cao L P, Jia R, Shen Y J, Zhao C Y, Xu P, Yin G J. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.). International Immunopharmacology, 2015, 25(1): 112-120.
[37]   Li A M, Shuai X Y, Jia Z J, Li H Y, Liang X B, Su D M, Guo W H. Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b. Journal of Translational Medicine, 2015, 13(1): 100.
[38]   Batra P, Sharma A K, Khajuria R. Probing Lingzhi or Reishi medicinal mushroom ganoderma lucidum (higher Basidiomycetes): a bitter mushroom with amazing health benefits. International Journal of Medicinal Mushrooms, 2013, 15(2): 127-143.
[39]   李鹏鹏. 香菇多糖诱导黄瓜抗霜霉病的作用及与氟醚菌酰胺混效作用的研究[D]. 泰安: 山东农业大学, 2014.
LI P P. The effect of lentinan on induce cucumber against downy mildew and mix with LH-2010A[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[4] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[5] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[6] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[7] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[8] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[9] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[10] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[11] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[12] ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003.
[13] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[14] DU Xia,WU Kuo,LIU Xia,ZHANG LiZhen,SU XiaoXia,ZHANG HongRui,ZHANG ZhongKai,HU XianQi,DONG JiaHong,YANG YanLi,GAO YuLin. The Occurrence Trends of Dominant Species of Potato Viruses and Thrips in Yunnan Province [J]. Scientia Agricultura Sinica, 2020, 53(3): 551-562.
[15] ZOU LinFeng,TU LiQin,SHEN JianGuo,DU ZhenGuo,CAI Wei,JI YingHua,GAO FangLuan. The Evolutionary Dynamics and Adaptive Evolution of Tomato Chlorosis Virus [J]. Scientia Agricultura Sinica, 2020, 53(23): 4791-4801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!