Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (1): 96-104.doi: 10.3864/j.issn.0578-1752.2018.01.009

• PLANT PROTECTION • Previous Articles     Next Articles

Induction Effect of Sharp Eyespot of Wheat and the Effect of Wheat Growth After Ganoderma lucidum Polysaccharides (GLP) Seed Dressing

ZHANG ZhongXiao1, WANG HongYan1, WANG KaiYun1, WANG Dong2, JIANG LiLi2   

  1. 1College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong; 2College of Agronomy, Shandong Agricultural University, Taian 271018, Shandong
  • Received:2017-06-15 Online:2018-01-01 Published:2018-01-01

Abstract: 【Objective】 Fungal polysaccharides can regulate plant growth, activate plant defense responses, and induce plant resistance to plant fungal and viral diseases. The objective of this study is to investigate the induction effect of sharp eyespot of wheat and the effect on wheat growth after Ganoderma lucidum polysaccharides (GLP) seed dressing.【Method】Three wheat cultivars including highly susceptible cultivar Jimai 22, middle susceptible cultivar Shannong 23 and resistant cultivar Luyuan 502 were chosen to test. Using the pot culture method, each pot was added with 20 mL of pathogenic fungi suspension, seeds were treated with the GLP, the control group was treated with water. The disease index and disease reduction against sharp eyespot of wheat were investigated. The mechanism of induced resistance in terms of defense enzyme activity, chlorophyll and malondialdehyde (MDA) content were evaluated. At the same time, the germination rate, plant height and root vigor were determined. 【Result】After GLP seed dressing, Jimai 22, Shannong 23, Luyuan 502 cultivars had the same rule on sharp eyespot of wheat. GLP seed dressing promoted the growth of wheat, 4, 8 g a.i./100 kg seed dose of GLP of Jimai 22 seed germinating potential were 53.50% and 52.75%, significantly higher than that of the control. After 7 d of wheat emergence, the plant height of wheat treated with GLP was significantly higher than that of the control group, and the higher the treatment dose, the more obvious the effect of induction enhancement. GLP seed dressing could significantly improve the root activity and the chlorophyll content of wheat, the root activity of 8 g a.i./100 kg seed dose of GLP of Jimai 22 was 0.26 mg·g-1·h-1, which was 2.77 times than that of the control. The chlorophyll a and b contents of 8 g a.i./100 kg seed dose of GLP were 1.96, 0.96 mg·g-1, respectively, which was 1.52, 1.44 times than that of the control. GLP seed dressing could produce certain effect on prevention and control of sharp eyespot of wheat. Take the highly susceptible cultivar Jimai 22 as an example, 8 g a.i./100 kg seed dose of GLP in wheat seed dressing, the control effects on sharp eyespot of wheat were 33.7%, 31.9% and 30.4% on the 7, 14 and 21 d after wheat completely germination. At the same time, the protective enzyme activity of PAL, POD, SOD of leaves increased obviously, while the content of MDA decreased. Eight g a.i./100 kg seed dose of GLP by seed dressing in Jimai 22, the activity of PAL, SOD and POD was 60.72 U·min-1·g-1 FW, 2.45 U·g-1 FW and 135.67 U·min-1·g-1 FW, respectively, which was 1.10, 1.32 and 1.13 times than that of the control. The content of MDA was 1.48 μmol·g-1, which was 26.1% lower than that of the control group.【Conclusion】The wheat seed dressed with GLP can promote the germination of wheat seeds and the growth of wheat seedlings, increase the content of chlorophyll. At the same time, it can also induce wheat sheath blight disease resistance, increase the activity of defense enzymes and decrease the content of MDA in wheat leaves.

Key words: Ganoderma lucidum polysaccharides, sharp eyespot of wheat, induced resistance, defensive enzymes

[1]    BOEREMA G H, VERHOEVEN A A.Check-list for scientific names of common parasitic fungi. Series 2b: Fungi on field crops: cereals and grasses. European Journal of Plant Pathology, 1977, 83(5): 165-204.
[2]    BLAIR I D. Studies on the growth in soil and the parasitic action of certain Rhizoctonia solaniisolates from wheat. Canadian Journal of Research, 1942, 20(3): 174-185.
[3]    黄秋斌, 张颖, 刘凤英, 王淼, 王刚. 蜡样芽孢杆菌B3-7在大田小麦根部的定殖动态及其对小麦纹枯病的防治效果. 生态学报, 2014, 34(10): 2559-2566.
HUANG Q B, ZHANG Y, LIU F Y, WANG M, WANG G. Colonization dynamics of Bacillus cereus B3-7 on wheat roots and control efficiency against sharp eyespot of wheat. Acta Ecologica Sinica, 2014, 34(10): 2559-2566. (in Chinese)
[4]    李丽琳, 范晓东. 小麦纹枯病的发生及防治方法. 天津农业科学, 2009, 15(4): 90-92.
LI L L, FAN X D. Diseases occurrence and control of wheat sharp eyespot. Tianjin Agricultural Sciences, 2009, 15(4): 90-92. (in Chinese)
[5]    邱德文. 植物免疫诱抗剂的研究进展与应用前景. 中国农业科技导报, 2014, 16(1): 39-45.
QIU D W. Progress and prospect of plant immunity inducer. Journal of Agricultural Science and Technology, 2014, 16(1): 39-45. (in Chinese)
[6]    张会云, 陈荣振, 冯国华, 刘东涛, 王静, 王晓军, 楼辰军, 张凤. 中国小麦纹枯病的研究现状与展望. 麦类作物学报, 2007, 27(6): 1150-1153.
ZHANG H Y, CHEN R Z, FENG G H, LIU D T, WANG J, WANG X J, LOU C J, ZHANG J. Research advances and prospect on wheat sharp eyespot in China. Journal of Triticeae Crops, 2007, 27(6): 1150-1153. (in Chinese)
[7]    王怀训, 王开运, 姜兴印, 仪美芹. 小麦纹枯病的研究进展. 山东农业大学学报(自然科学版), 2001, 32(2): 267-270.
WANG H X, WANG K Y, JIANG X Y, YI M Q. Advances of wheat sharp eyespot. Journal of Shandong Agricultural University (Natural Science), 2001, 32(2): 267-270. (in Chinese)
[8]    潘亚清, 史淑芝. 植物的诱导抗病性研究进展. 中国农学通报, 2005, 21(8): 366-369.
PAN Y Q, SHI S Z. Advances in study of plant induced disease resistance. Chinese Agricultural Science Bulletin, 2005, 21(8): 366-369. (in Chinese)
[9]    向妙莲, 何永明, 付永琦, 曾晓春, 黄俊宝, 黄友明. 茉莉酸甲酯对水稻白叶枯病的诱导抗性及相关防御酶活性的影响. 植物保护学报, 2013, 40(2): 97-101.
XIANG M L, HE Y M, FU Y Q, ZENG X C, HUANG J B, HUANG Y M. Effect of methyl jasmonate on induced resistance of rice seedlings against bacterial leaf blight and activities of related defense enzymes. Acta Phytophylacica Sinica, 2013, 40(2): 97-101. (in Chinese)
[10]   张文清, 夏玮, 程俞, 张元兴.不同分子量壳多糖对植物病菌的拮抗作用及其诱导提高寄主植物抗病性. 植物保护学报, 2004, 31(3): 235-240.
ZHANG W Q, XIA W, CHENG Y, ZHANG Y X. Bacteriostatic effect of chitosans with different molecular weights to phytopathogenic fungi and inducing defense responses. Acta Phytophylacica Sinica, 2004, 31(3): 235-240. (in Chinese)
[11]   Wang J, Wang H Y, Xia X M, LI P P, WANG K Y. Synergistic effect of Lentinula edodes and Pichia membranefaciens on inhibition of Penicillium expansum infections. Postharvest Biology and Technology, 2013, 81: 7-12.
[12]   王杰, 王开运, 张骞, 朱玉坤, 姜莉莉.海带多糖对烟草花叶病毒的抑制作用及其对烟草酶活性的影响. 植物保护学报, 2011, 38(6): 532-538.
WANG J, WANG K Y, ZHANG Q, ZHU Y K, JIANG L L. Inhibition of laminarin against TMV and effect on protective enzymes in tobacco. Acta Phytophylacica Sinica, 2011, 38(6): 532-538. (in Chinese)
[13]   KLARZYNSKI O, PLESSE B, JOUBERT J M, YVIN J C, KOPP M, KLOAREG B, FRITIG B. Linear β-1,3 glucans are elicitors of defense responses in tobacoo. Plant Physiology, 2000, 124: 1027-1038.
[14]   AZIZ A, POINSSOT B, DAIRE X, ADRIAN M, BEZIER A, LAMBERT B, JOUBERT J M, PUGIN A. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions, 2003, 16(12): 1118-1128.
[15]   CAO Y, WU S H, DAI Y C. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Diversity, 2012, 56(1): 49-62.
[16]   HABIJANIC J, BEROVIC M, BOH B, PLANKL M, WRABER B. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-α, IL-12, IFN-γ, IL-2, IL-4, IL-10 and IL-17. New Biotechnology, 2015, 32(1): 85-95.
[17]   何晋浙, 邵平, 孟祥河, 孙培龙.灵芝多糖的结构特征分析. 分析化学, 2010, 38(3): 372-376 .
HE J Z, SHAO P, MENG X H, SUN P L. Analysis of structural characteristics of polysaccharide from Ganoderma lucidum. Chinese Journal of Analytical Chemistry, 2010, 38(3): 372-376. (in Chinese) 
[18]   SHI M, ZHANG Z, YANG Y. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide(GLP). Carbohydrate polymers, 2013, 95(1): 200-206.
[19]   宁玉波, 王红艳, 乔康, 刘秀梅, 王开运. 灵芝多糖对番茄抗灰霉病的诱导效应. 中国农业科学, 2016, 49(11): 2103-2112.
NING Y B, WANG H Y, QIAO K, LIU X M, WANG K Y. Induced resistance by polysaccharides isolated from ganoderma lucidum(in Chinese) in tomato against gray mold. Scientia Agricultura Sinica, 2016, 49(11): 2103-2112.
[20]   李山东, 于金凤, 彭迪, 朱烨琳, 侯毅平, 王建新, 周明国, 陈长军. 枯草芽孢杆菌NJ-18和氟酰胺联合拌种防治小麦纹枯病研究. 农药学学报, 2013, 15(4): 427-433.
LI S D, YU J F, PENG D, ZHU Y L, HOU Y P, WANG J X, ZHOU M G, CHEN C J. Co-utilization of Bacillus subtilis and flutolanil in controlling sharp eye spot of wheat by seed dressing. Chinese Journal of Pesticide Science, 2013, 15(4): 427-433. (in Chinese)
[21]   党志红, 李耀发, 潘文亮, 王亚欣, 闫俊茹, 代丽华, 许桂明, 高占林. 吡虫啉拌种防治小麦蚜虫技术及安全性研究. 应用昆虫学报, 2011, 48(6): 1676-1681.
DANG Z H, LI Y F, PAN W L, WANG Y X, YAN J R, DAI L H, XU G M, GAO Z L. Research on the techniques and safety of dressing seeds with imidacloprid to control wheat aphids. Chinese Journal of Applied Entomology, 2011, 48(6): 1676-1681. (in Chinese)
[22]   邹琦. 植物生理生化实验指导. 北京: 中国农业出版社, 1995: 30-32
ZOU Q. Plant physiology and biochemistry experiment guide. Beijing: China Agriculture Press, 1995: 30-32. (in Chinese)
[23]   彭运生, 刘恩.关于提取叶绿素方法的比较研究. 北京农业大学学报, 1992, 18(3): 247-250.
PENG Y S, LIU E. Studies of method on extract chlorophyll a and b. Acta Agriculturae Universitatis Pekinensis, 1992, 18(3): 247-250. (in Chinese)
[24]   刘太国, 石延霞, 文景芝, 李永镐. 水杨酸诱导烟草对TMV的抗性和PAL活性变化研究. 植物病理学报, 2003, 33(2): 190-191.
LIU T G, SHI Y X, WEN J Z, LI Y H. Changes of the PAL activity and induced resistance to TMV in tobacco treated with SA and inoculated with TMV. Acta Phytopathologica Sinica, 2003, 33(2): 190-191. (in Chinese) 
[25]   郝再彬, 苍晶, 徐仲. 植物生理实验. 哈尔滨: 哈尔滨工业大学出版社, 2004.
HAO Z B, CANG J, XU Z. Plant Physiology Experiment. Harbin: Harbin Institute of Technology Press, 2004. (in Chinese) 
[26]   汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999: 314-315.
TANG Z C. Techniques of modern plant physiology experiment. Beijing: Science Press, 1999: 314-315. (in Chinese)
[27]   李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. The Experiment Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. (in Chinese)
[28]   ASAI T, TENA G, PLOTNIKOVA J, WILLMANN M R, CHIU W L, GOMEZ L, BOLLER T, AUSUBEL F M, SHEEN J.MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415(6875): 977-983.
[29]   单宏英, 沈小英, 陈德鑫, 袁治礼, 牛俞德, 安德荣. 香菇多糖对烟草灰霉病的防治效果研究. 中国烟草学报, 2012, 18(4): 56-61.
SHAN H Y, SHEN X Y, CHEN D X, YUAN Z L, NIU Y D, AN D R. In vitro and in vivo biological control effect of lentinan against tobacco grey mould (Botrytis cinerea). Acta Tabacaria Sinica(in Chinese) , 2012, 18(4): 56-61.
[30]   颜惠霞, 徐秉良, 梁巧兰, 薛应钰, 陈荣贤, 梁志福. 南瓜品种对白粉病的抗病性与叶绿素含量和气孔密度的相关性. 植物保护, 2009, 35(1): 79-81.
YAN H X, XU B L, LIANG Q L, XUE Y Y, CHEN R X, LIANG Z F. Effects of chlorophyll content and stoma density on pumpkin resistance to powdery mildew. Plant Protection, 2009, 35(1): 79-81. (in Chinese)
[31]   RYAN C A. Oligosaccharide signals: from plant defense to parasite offense. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(1): 1-2.
[32]   朱英波, 史凤玉, 张瑞敬, 吴楠, 宋士清. 壳寡糖和钕复合处理诱导黄瓜对枯萎病的抗性. 中国生物防治学报, 2014, 30(4): 528-533.
ZHU Y B, SHI F Y, ZHANG R J, WU N, SONG S Q. Effects of chitosan oligosaccharides in combination with neodymium on resistance of cucumbers to fusarium wilts. Chinese Journal of Biological Control, 2014, 30(4): 528-533. (in Chinese)
[33]   HE P Q, TIAN L, CHEN K S, HAO L H, LI G Y. Induction of volatile organic compounds of Lycopersicon esculentum Mill. and its resistance to Botrytis cinerea Pers. by burdock oligosaccharide. Journal of Integrative Plant Biology, 2006, 48(5): 550-557.
[34]   WANG J, WANG H Y, XIA X M, LI P P, WANG K Y. Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings. International Journal of Biological Macromolecules, 2013, 61: 264-269.
[35]   伊艳杰, 刘娜, 李翠香, 卫雁南. 牛蒡寡糖诱导对小麦白粉病抗性的影响. 麦类作物学报, 2009, 29(3): 540-542.
YI Y J, LIU N, LI C X, WEI Y N. Effect of induction by burdock oligosaccharide on powdery mildew resistance in wheat. Journal of Triticeae Crops, 2009, 29(3): 540-542. (in Chinese) 
[36]   王关林, 邢卓, 潘凌子, 方宏筠. 蜂毒肽对农作物生理指标及防御系统酶影响的研究. 作物学报, 2006, 32(4): 593-596.
WANG G L, XING Z, PAN L Z, FANG H J. Effects of melittin on the physiological indices and defensive enzymes in crops. Acta Agronomica Sinica, 2006, 32(4): 593-596. (in Chinese)
[37]   MACDONALD M J, D’CUNHA G B. A modern view of phenylalanine ammonia lyase. Biochemistry and Cell Biology, 2007, 85(3): 273-282.
[38]   LIU R, XU S, LI J, LIN Z. Expression profile of a PAL gene from Astragalus membranaceus var. mongholicus and its crucial role in flux into flavonoid biosynthesis. Plant cell reports, 2006, 25(7): 705-710.
[39]   江汉民, 王楠, 赵换, 孙德岭, 宋文芹. 花椰菜苯丙氨酸解氨酶基因的克隆及黑腐病菌胁迫下的表达分析. 南开大学学报(自然科学版), 2012, 45(4): 87-92, 98.
JIANG H M, WANG N, ZHAO H, SUN D L, SONG W Q. Cloning of phenylanlanine ammonia-lyase gene from cauliflower and its expression under Xcc stress. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2012, 45(4): 87-92, 98. (in Chinese)
[40]   DIXON R A, ACHNINE L, KOTA P, LIU C J, REDDY M S S, WANG L J. The phenylpropanoid pathway and plant defence—a genomics perspective. Molecular plant pathology, 2002, 3(5): 371-390.
[41]   LAMB C, DIXON R A. The oxidative burst in plant disease resistance. Annual review of plant Physiology and Plant Molecular biology, 1997, 48(1): 251-275.
[42]   GARCIA P S, PETEIRA E, LRON B, RODRIGUEZ Y. Induction of peroxidase and chitinase activity by Alternaria solani in five tomato cultivars with different susceptibility degree to this fungus. Revistade Proteccion Vegetal, 1998, 13(2): 91-95.
[43]   PARK M S, JO P G, CHOI Y K, AN K W, CHOI C Y. Characterization and mRNA expression of Mn-SOD and physiological responses to stresses in the Pacific oyster Crassostrea gigas. Marine Biology Research, 2009, 5(5): 451-461.
[44]   SONG M, FAN S, PANG C, WEI H, YU S. Genetic analysis of the antioxidant enzymes, methane dicarboxylic aldehyde (MDA) and chlorophyll content in leaves of the short season cotton (Gossypium hirsutum L.). Euphytica, 2014, 198(1): 153-162.
[45]   李鹏鹏. 香菇多糖诱导黄瓜抗霜霉病的作用及与氟醚菌酰胺混效作用的研究[D]. 泰安: 山东农业大学, 2014.
LI P P. The effect of lentinan on induce cucumber against downy mildew and mix with LH-2010A[D]. Taian:Shandong Agricultural University, 2014. (in Chinese)
[46]   Wilingham S L, Pegg K G, Langdon P W B, Cooke A W, Beasley D, Mclennan R. Combination of strobilurin fungicides and acibenzolar (Bion) to reduce scab on passion fruit caused by Cladosporium oxysporum. Australasian Plant Pathology, 2002, 31(4): 333-336.
[1] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[2] ZHOU JingLong, FENG ZiLi, FENG HongJie, LI YunQing, YUAN Yuan, LI ZhiFang, WEI Feng, SHI YongQiang, ZHAO LiHong, SUN ZhengXiang, ZHU HeQin, ZHOU Yi. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium Bacillus cereus YUPP-10 Against Verticillium Wilt in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2017, 50(14): 2717-2727.
[3] XU Run-dong, SHENG Shi-ying, YANG Xiu-fen, LIU Yong. Effect of Induced Resistance of Oligosaccharins·Plant Activator Protein on Wheat to WYMV [J]. Scientia Agricultura Sinica, 2016, 49(18): 3561-3568.
[4] LIU Qing, LUAN Xue-tao, XU Shi-yan,MENG Ying, GAO Jiang-man, XI Zhu-mei. Effect of 24-epibrassinolide Treatment on Grapevine Leaf Against Plasmopara viticola [J]. Scientia Agricultura Sinica, 2016, 49(15): 3010-3018.
[5] NING Yu-bo, WANG Hong-yan, QIAO Kang, LIU Xiu-mei, WANG Kai-yun. Induced Resistance by Polysaccharides Isolated from Ganoderma lucidum in Tomato Against Gray Mold [J]. Scientia Agricultura Sinica, 2016, 49(11): 2103-2112.
[6] SHI Yan-xia, XU Yu-fang, XIE Xue-wen, CHAI A-li, WANG Wei-wei, LI Bao-ju. Effects of FBT on Induction of Systemic Resistance in Cucumber Against Cucumber Fusarium Wilt Caused by Fusarium oxysporum f. sp. cucumerinum Owen [J]. Scientia Agricultura Sinica, 2015, 48(19): 3848-3856.
[7] WANG Jing, WANG Hai-Xia, TIAN Zhen-Dong. Histochemical Assays and Signaling Pathway Analysis of β-Aminobutyric Acid Induced Resistance in Potato Against Phytophthora infestans [J]. Scientia Agricultura Sinica, 2014, 47(13): 2571-2579.
[8] GE Yong-Hong, BI Yang, LI Yong-Cai, WANG Yi. Resistance of Harvested Fruits and Vegetables to Diseases Induced by ASM and Its Mechanism [J]. Scientia Agricultura Sinica, 2012, 45(16): 3357-3362.
[9] LIU Yong-Qing, ZHOU Chang-Yong, ZHOU Yan. Progress in Studies on Resistance to Citrus tristeza virus by Genetic Engineering Measures [J]. Scientia Agricultura Sinica, 2012, 45(14): 2848-2855.
[10] . Ultrastructure of Sunflower Resistance to Rust Induced by Oligosaccharide
[J]. Scientia Agricultura Sinica, 2009, 42(2): 719-724 .
[11] . [J]. Scientia Agricultura Sinica, 2008, 41(1): 102-107 .
[12] ,,,,,,. Induced Resistance by the Filtration of Bipolaris maydis Race T Toxin Cultivation [J]. Scientia Agricultura Sinica, 2005, 38(08): 1578-1584 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!