Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2821-2837.doi: 10.3864/j.issn.0578-1752.2025.14.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Straw Returning Combined with Chemical Fertilizer on Soil Ecosystem Multifunctionality

XUAN ZePeng1,2(), FENG HuiYao1,2, CHEN MeiQi2,3, XU JiSheng2, LIU MengXuan2,5, ZHAO BingZi2,4,*(), ZHANG JiaBao1,2,*()   

  1. 1 College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi
    2 State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 211135
    3 College of Geographic Sciences of Nanjing Normal University, Nanjing 210023
    4 College of Nanjing, University of Chinese Academy of Science, Nanjing 211135
    5 College of Forestry and Grassland & College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037
  • Received:2024-09-14 Accepted:2024-11-02 Online:2025-07-17 Published:2025-07-17
  • Contact: ZHAO BingZi, ZHANG JiaBao

Abstract:

【Objective】This study aimed to explore the impact of combined application of straw returning and chemical fertilizers on the multifunctionality of farmland ecosystem, so as to provide the theoretical support for the scientific combined application of straw and chemical fertilizers and the improvement of crop productivity. 【Method】An eight-year winter wheat-summer maize rotation experiment (2012-2020) was conducted with four treatments: no fertilization control treatment (NF), single application of chemical fertilizers (F), single application of straw (S), and combined application of straw returning and chemical fertilizers (FS). 17 general indexes of farmland ecosystem service function were determined to calculate soil ecosystem multifunction index (MFI). In addition, the compositions of bacterial and fungal communities in rhizosphere and non-rhizosphere soil were determined. The coupling effects of chemical fertilizers and straw returning on the multifunctionality of soil ecosystem and the main driving factors in soil properties were explored. 【Result】Compared with NF, F and FS treatments significantly increased crop yields and MFI, but S treatment only increased soil MFI without significant effect on yield. A random forest model showed that n-acetyl-β-glucosaminase (NAG) and total nitrogen (TN) were the most important factors affecting MFI. Long-term fertilization also significantly changed the community structure of bacteria and fungi in both the rhizosphere and bulk soil compartments. Compared with the NF treatment, F and FS treatments significantly increased the relative abundance of bulk microorganisms, such as Actinobacteria, Bacteroidetes and Basidiomycota, as well as the relative abundance of rhizosphere fungi, such as Basidiomycota. The redundancy analysis showed that SOM and its component, dissolved organic carbon, were the key factors affecting the composition of bulk soil bacterial and fungal communities. Network analysis and correlation analysis further showed that MFI was significantly correlated with the relative abundances of network modules for both bulk and rhizosphere microorganisms. Moreover, the F and FS treatments with the high production level enriched bulk soil microorganisms, such as Hannaella and Chaetomium, which had strong metabolism of amino acid and nucleotide, contributing to the soil ecosystem multifunctionality. Nevertheless, for the low-yielding group (NF and S treatments), the species that were not favorable to soil nutrient retention were enriched in both the bulk and rhizosphere soil, such as Solibacterales, Phycicoccus, and Pleosporales. 【Conclusion】The combined treatment of straw incorporation and chemical fertilizer could significantly improve both crop yield and ecosystem multifunction indexes. Long-term straw returning combined with chemical fertilizer could enhance ecosystem multifunctionality by increasing soil enzyme activity and total nitrogen content. This practice also fostered the proliferation of specific species (Hannaella, Chaetomium, etc.), which played key roles in nutrient cycling, enzyme activity, and promoted amino acid and nucleotide metabolism in the bulk soil, thus contributing to the maintenance of ecosystem multifunctionality.

Key words: ecosystem multifunctionality index, straw return, chemical fertilizers, rhizosphere microbiota, soil enzyme activity, function prediction

Fig. 1

Relationship between maize yield and ecological multifunction index under different fertilization treatments Error lines in Figure A, B represent standard deviations (LSD method, P < 0.05); Figure C represents the quadratic regression equation (U-shaped parabola) fitting the relationship between MFI and yield. Different lowercase letters above bars indicate significant differences among treatments (P<0.05). NF: No fertilization control; F: Conventional chemical fertilizer; S: Straw application only; FS: Combined straw with chemical fertilizer. The same as below"

Table 1

Soil chemical properties under different fertilization treatments"

土壤性质 Soil property NF F S FS
pH 8.53±0.04a 8.26±0.03c 8.48±0.02b 8.19±0.04d
有机质 Soil organic matter, SOM (g·kg-1) 9.90±1.02c 12.95±0.39b 13.20±0.61b 22.11±1.33a
全氮 Total nitrogen, TN (g·kg-1) 0.62±0.04d 0.84±0.06b 0.74±0.01c 1.05±0.06a
全磷 Total Phosphorus, TP (g·kg-1) 0.95±0.06b 1.37±0.14a 0.91±0.05b 1.31±0.09a
全钾 Total potassium, TK (g·kg-1) 15.7±0.59a 16.36±0.58a 15.08±0.35a 16.43±0.68a
有效磷 Available phosphorus, AP (mg·kg-1) 2.47±0.88b 9.08±1.08a 2.68±1.10b 9.92±1.93a
速效钾 Available potassium, AK (mg·kg-1) 52.68±2.06d 100.39±8.49b 71.98±6.19c 159.57±11.18a
硝态氮 Nitrate nitrogen, NO3--N (mg·kg-1) 6.90±0.85c 8.32±0.92b 9.88±0.76b 13.18±2.68a
微生物生物量碳 Microbial biomass carbon, MBC (mg·kg-1) 185.12±31.16d 352.17±34.21b 264.22±36.45c 454.91±68.84a
微生物生物量氮 Microbial biomass nitrogen, MBN (mg·kg-1) 27.84±4.22c 53.15±4.14a 27.84±2.00c 47.03±5.43b
可溶性有机碳 Dissolved organic carbon, DOC (mg·kg-1) 30.16±1.92b 34.41±3.97b 32.89±1.58b 44.25±3.50a
可溶性有机氮 Dissolved organic nitrogen, DON (mg·kg-1) 5.19±0.73b 6.44±2.63b 8.27±0.70b 9.64±1.08a

Table 2

Soil enzyme activities under different fertilization treatments"

酶活性 Enzyme activity NF F S FS
β-葡萄糖苷酶 β-glucosidase, BG (mg·g-1·h-1) 166.2±12.57d 280.5±12.1b 215.83±17.31c 479.75±67.85a
N-乙酰-β-氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase, NAG (mg·kg-1·h-1) 35.65±2.51d 79.89±4.67b 52.50±9.31c 130.86±17.07a
脲酶 Urease, UR (mg·kg-1·h-1) 130.86±17.07a 1.63±0.21b 2.17±0.12a 1.23±0.29c
碱性磷酸酶 Alkaline phosphatase, AKP (mg·g-1·h-1) 901.09±69.33d 1604.89±186.31b 1078.93±93.18c 1979.98±282.57a
转化酶 Invertase, INV (mg·g-1·h-1) 1362.49±115.25d 2343.29±247.09b 1751.53±92.22c 3682.54±467.48a

Fig. 2

PCA analysis based on soil physical and chemical properties (a) and enzyme activity and random forest prediction analysis of MFI index (b) ** indicates P<0.01; * indicates P<0.05. BG: β-glucosidase; NAG: β-1,4-N-acetylglucosaminidase; UR: Urease; AKP: Alkaline phosphatase; INV: Invertase"

Fig. 3

Relative abundance of microorganisms in the bulk and rhizosphere soil at the phylum level and their community PCoA analysis under different fertilization treatments a, b: Relative abundance of bacteria in the bulk and rhizosphere soil; c, d: Relative abundance of fungi in the bulk and rhizosphere soil; e, f: PCoA of bacteria in the bulk and rhizosphere soil; g, h: PCoA of fungi in the bulk and rhizosphere soil"

Fig. 4

RDA analysis of bulk soil bacteria (a) and fungi (b) under different fertilization treatments and their corresponding Mantel tests (c, d)"

Fig. 5

Co-occurrence networks of soil bacteria-fungi in bulk (A) and rhizosphere (B) soil and module relative abundances (Z score of cumulative abundance) (C, D) under different fertilization treatments The collinear networks of the bulk (A) and rhizosphere (B) soil, respectively, based on the correlation analysis; Blue and red edges stand for strong (Spearman’s |r|≥0.75) and significant (P<0.001) positive or negative correlations, respectively"

Table 3

Correlation between ecosystem multifunctionality index and relative abundances of modules under different fertilization treatments"

非根际土壤模块相对丰度
Relative abundances of module in bulk soil
根际土壤模块相对丰度
Relative abundances of module in rhizosphere soil
Module1 Module2 Module3 Module1 Module2 Module3
生态多功能指数MFI -0.133 0.523** 0.406 -0.436 -0.551** -0.338

Fig. 6

Functional prediction of bacteria (a), fungi (b) in bulk soil and bacteria (c) in the network module 2 of rhizosphere soil under different fertilization treatments"

Fig. 7

Prediction of bacterial amino acids synthesis function in the network module 2 of bulk soil under different fertilization treatments"

Fig. 8

OTUs differences between different treatments in the network module 2 of bulk (a) and rhizosphere soil (b)"

[1]
朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2): 259-273.
ZHU Z L, JIN J Y. Fertilizer use and food security in China. Journal of Plant Nutrition and Fertilizers, 2013, 19(2): 259-273. (in Chinese)
[2]
唐继伟, 林治安, 李娟, 袁亮, 徐久凯, 田昌玉, 温延臣, 赵秉强. 潮土小麦-玉米轮作体系氮肥用量阈值及土壤硝态氮年际变化. 植物营养与肥料学报, 2020, 26(12): 2246-2252.
TANG J W, LIN Z A, LI J, YUAN L, XU J K, TIAN C Y, WEN Y C, ZHAO B Q. Optimal nitrogen rate and the down movement of soil nitrate nitrogen in wheat-maize rotation system in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2246-2252. (in Chinese)
[3]
HU Q Y, LIU T Q, DING H N, LI C F, TAN W F, YU M, LIU J, CAO C G. Effects of nitrogen fertilizer on soil microbial residues and their contribution to soil organic carbon and total nitrogen in a rice-wheat system. Applied Soil Ecology, 2023, 181: 104648.
[4]
冀建华, 吕真真, 刘淑珍, 侯红乾, 刘益仁, 刘秀梅, 李絮花, 蓝贤瑾. 长期施用化肥对南方稻田土壤酸化和盐基离子损失的影响. 中国农业科学, 2024, 57(13): 2599-2611.doi: 10.3864/j.issn.0578-1752.2024.13.008.
JI J H, Z Z, LIU S Z, HOU H Q, LIU Y R, LIU X M, LI X H, LAN X J. Long-term application of chemical fertilizers induces soil acidification and soil exchangeable base cation loss on paddy in southern China. Scientia Agricultura Sinica, 2024, 57(13): 2599-2611. doi: 10.3864/j.issn.0578-1752.2024.13.008. (in Chinese)
[5]
孟凡乔. 中国有机农业发展: 贡献与启示. 中国生态农业学报, 2019, 27(2): 198-205.
MENG F Q. Organic agriculture development in China: Challenges and implications. Chinese Journal of Eco-Agriculture, 2019, 27(2): 198-205. (in Chinese)
[6]
FRANCIOLI D, SCHULZ E, LENTENDU G, WUBET T, BUSCOT F, REITZ T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Frontiers in Microbiology, 2016, 7: 1446.
[7]
LIU E K, YAN C R, MEI X R, HE W Q, BING S H, DING L P, LIU Q, LIU S, FAN T L. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in Northwest China. Geoderma, 2010, 158(3/4): 173-180.
[8]
YIN Y F, HE X H, GAO R, MA H L, YANG Y S. Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon. Journal of Integrative Agriculture, 2014, 13(3): 491-498.
[9]
刘淑军, 李冬初, 黄晶, 曲潇林, 马常宝, 王慧颖, 于子坤, 张璐, 韩天富, 柳开楼, 申哲, 张会民. 近30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力. 中国农业科学, 2023, 56(16): 3140-3155. doi: 10.3864/j.issn.0578-1752.2023.16.008.
LIU S J, LI D C, HUANG J, QU X L, MA C B, WANG H Y, YU Z K, ZHANG L, HAN T F, LIU K L, SHEN Z, ZHANG H M. Spatial-temporal variation characteristics of wheat and maize stalk resources and chemical fertilizer reduction potential of returning to farmland in recent 30 years in China. Scientia Agricultura Sinica, 2023, 56(16):3140-3155. doi: 10.3864/j.issn.0578-1752.2023.16.008. (in Chinese)
[10]
赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响. 应用生态学报, 2015, 26(6): 1785-1792.
ZHAO Y L, GUO H B, XUE Z W, MU X Y, LI C H. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield. Chinese Journal of Applied Ecology, 2015, 26(6): 1785-1792. (in Chinese)
[11]
王晶, 孙松青, 李雪, 高凤婕, 吴钦泉, 石国明, 胡凯, 耿立中, 马学文. 秸秆不同还田方式对轮作小麦-玉米产量、土壤养分及蔗糖酶活性的影响. 江苏农业科学, 2023, 51(4): 85-90.
WANG J, SUN S Q, LI X, GAO F J, WU Q Q, SHI G M, HU K, GENG L Z, MA X W. Effects of different straw returning methods on yield, soil nutrients and sucrase activity of wheat-maize in rotation. Jiangsu Agricultural Sciences, 2023, 51(4): 85-90. (in Chinese)
[12]
DUAN Y, CHEN L, LI Y M, WANG Q Y, ZHANG C Z, MA D H, LI J Y, ZHANG J B. N, P and straw return influence the accrual of organic carbon fractions and microbial traits in a Mollisol. Geoderma, 2021, 403: 115373.
[13]
周晓果. 林下植物功能群丧失对桉树人工林土壤生态系统多功能性的影响[D]. 南宁: 广西大学, 2016.
ZHOU X G. Effects of loss of functional groups of undergrowth plants on the versatility of soil ecosystem of eucalyptus plantation[D]. Nanning: Guangxi University, 2016. (in Chinese)
[14]
NI H W, LIU C Y, SUN B, LIANG Y T. Response of global farmland soil organic carbon to nitrogen application over time depends on soil type. Geoderma, 2022, 406: 115542.
[15]
唐继伟, 徐久凯, 温延臣, 田昌玉, 林治安, 赵秉强. 长期单施有机肥和化肥对土壤养分和小麦产量的影响. 植物营养与肥料学报, 2019, 25(11): 1827-1834.
TANG J W, XU J K, WEN Y C, TIAN C Y, LIN Z A, ZHAO B Q. Effects of organic fertilizer and inorganic fertilizer on the wheat yields and soil nutrients under long-term fertilization. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1827-1834. (in Chinese)
[16]
张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响. 中国农学通报, 2010, 26(11): 182-187.
ZHANG B Y, CHEN T L, WANG B. Effects of long-term uses of chemical fertilizers on soil quality. Chinese Agricultural Science Bulletin, 2010, 26(11): 182-187. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2009-2796
[17]
WANG C L, MA Y Q, HE W H, KUZYAKOV Y, BOL R, CHEN H Q, FAN M S. Soil quality and ecosystem multifunctionality after 13-year of organic and nitrogen fertilization. The Science of the Total Environment, 2024, 931: 172789.
[18]
CHEN Q L, DING J, ZHU D, HU H W, DELGADO-BAQUERIZO M, MA Y B, HE J Z, ZHU Y G. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141: 107686.
[19]
陈美淇, 马垒, 赵炳梓, 范树印, 谭钧, 鞠振山, 朱锦尉, 徐国华, 王淑媛, 徐基胜, 张佳宝. 木本泥炭对红黄壤性水田土壤有机质提升和细菌群落组成的影响. 土壤, 2020, 52(2): 279-286.
CHEN M Q, MA L, ZHAO B Z, FAN S Y, TAN J, JU Z S, ZHU J W, XU G H, WANG S Y, XU J S, ZHANG J B. Effects of woody peat on quick improvement of soil organic matter and bacterial community composition in newly reclaimed red-yellow paddy soils. Soils, 2020, 52(2): 279-286. (in Chinese)
[20]
梁路, 张卫杰, 徐博涵, 庄秋丽, 姜秀芳, 黄玉波. 有机无机肥配施影响土壤肥力与土壤环境的研究进展. 河南农业科学, 2022, 51(3): 1-11.
LIANG L, ZHANG W J, XU B H, ZHUANG Q L, JIANG X F, HUANG Y B. Research progress on effects of combined application of organic and inorganic fertilizers on soil fertility and soil environment. Journal of Henan Agricultural Sciences, 2022, 51(3): 1-11. (in Chinese)

doi: 10.15933/j.cnki.1004?3268.2022.03.001
[21]
马垒, 李燕, 魏建林, 李子双, 周晓琳, 郑福丽, 吴小宾, 王利, 刘兆辉, 谭德水. 长期秸秆还田对潮土真菌群落、酶活性和小麦产量的影响. 环境科学, 2022, 43(10): 4755-4764.
MA L, LI Y, WEI J L, LI Z S, ZHOU X L, ZHENG F L, WU X B, WANG L, LIU Z H, TAN D S. Effects of long-term straw returning on fungal community, enzyme activity and wheat yield in fluvo-aquic soil. Environmental Science, 2022, 43(10): 4755-4764. (in Chinese)
[22]
XU H D, ZHU B, WEI X M, YU M K, CHENG X R. Root functional traits mediate rhizosphere soil carbon stability in a subtropical forest. Soil Biology and Biochemistry, 2021, 162: 108431.
[23]
HU W, ZHANG Y P, RONG X M, ZHOU X, FEI J C, PENG J W, LUO G W. Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality. Biochar, 2024, 6(1): 3.
[24]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学出版社, 1999: 296-338.
LU R K. Methods of Soil Agricultural Chemistry Analysis. Beijing: Chinese Agricultural Science and Technology Press, 1999: 296-338. (in Chinese)
[25]
JONES D, WILLETT V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2005, 38(5): 991-999.
[26]
韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应. 中国农业科学, 2023, 56(8): 1503-1514. doi: 10.3864/j.issn.0578-1752.2023.08.007.
HAN Z X, FANG J J, WU X P, JIANG Y, SONG X J, LIU X T. Synergistic effects of organic carbon and nitrogen content in water-stable aggregates as well as microbial biomass on crop yield under long-term straw combined chemical fertilizers application. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514. doi: 10.3864/j.issn.0578-1752.2023.08.007. (in Chinese)
[27]
VERCHOT L, BORELLI T. Application of-nitrophenol (NP) enzyme assays in degraded tropical soils. Soil Biology and Biochemistry, 2005, 37(4): 625-633.
[28]
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 294-338.
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: Agricultural Press, 1986: 294-338. (in Chinese)
[29]
MAESTRE F T, QUERO J L, GOTELLI N J, ESCUDERO A, OCHOA V, DELGADO-BAQUERIZO M, GARCÍA-GÓMEZ M, BOWKER M A, SOLIVERES S, ESCOLAR C, et al. Plant species richness and ecosystem multifunctionality in global drylands. Science, 2012, 335(6065): 214-218.

doi: 10.1126/science.1215442 pmid: 22246775
[30]
熊定鹏, 赵广帅, 武建双, 石培礼, 张宪洲. 羌塘高寒草地物种多样性与生态系统多功能关系格局. 生态学报, 2016, 36(11): 3362-3371.
XIONG D P, ZHAO G S, WU J S, SHI P L, ZHANG X Z. The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau. Acta Ecologica Sinica, 2016, 36(11): 3362-3371. (in Chinese)
[31]
白震, 张明, 宋斗妍, 张旭东. 不同施肥对农田黑土微生物群落的影响. 生态学报, 2008, 28(7): 3244-3253.
BAI Z, ZHANG M, SONG D Y, ZHANG X D. Effect of different fertilizaiton on microbial community in an arable mollisol. Acta Ecologica Sinica, 2008, 28(7): 3244-3253. (in Chinese)
[32]
冯海萍, 陈卓, 杨虎. 微生物菌剂对连作芹菜根际土壤真菌群落多样性与结构的影响. 干旱地区农业研究, 2024, 42(2): 53-61, 70.
FENG H P, CHEN Z, YANG H. Effects of biocontrol agents on fungal community diversity and structure in rhizosphere soil of continuous cropping celery. Agricultural Research in the Arid Areas, 2024, 42(2): 53-61, 70. (in Chinese)
[33]
ROGNES T, FLOURI T, NICHOLS B, QUINCE C, MAHÉ F. VSEARCH: A versatile open source tool for metagenomics. PeerJ, 2016, 4: e2584.
[34]
赵自超, 韩笑, 石岳峰, 吴文良, 孟凡乔. 硝化和脲酶抑制剂对华北冬小麦-夏玉米轮作固碳减排效果评价. 农业工程学报, 2016, 32(6): 254-262.
ZHAO Z C, HAN X, SHI Y F, WU W L, MENG F Q. Effect of nitrification and urease inhibitor on carbon sequestration and greenhouse gas emissions in winter wheat and summer maize rotation system in North China. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 254-262. (in Chinese)
[35]
LI K L, ZHANG H Y, LI X L, WANG C, ZHANG J L, JIANG R F, FENG G, LIU X J, ZUO Y M, YUAN H M, ZHANG C C, GAI J P, TIAN J. Field management practices drive ecosystem multifunctionality in a smallholder-dominated agricultural system. Agriculture, Ecosystems & Environment, 2021, 313: 107389.
[36]
WU G, LING J, ZHAO D Q, LIU Z X, XU Y P, KUZYAKOV Y, MARSDEN K, WEN Y, ZHOU S L. Straw return counteracts the negative effects of warming on microbial community and soil multifunctionality. Agriculture, Ecosystems & Environment, 2023, 352: 108508.
[37]
甄丽莎, 谷洁, 高华, 秦清军, 陈强龙. 秸秆还田与施肥对土壤酶活性和作物产量的影响. 西北植物学报, 2012, 32(9): 1811-1818.
ZHEN L S, GU J, GAO H, QIN Q J, CHEN Q L. Effect of straws, manure and chemical fertilizer on soil properties and crop yields. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(9): 1811-1818. (in Chinese)
[38]
陈素英, 张喜英, 孙宏勇, 邵立威. 华北平原秸秆覆盖冬小麦减产原因分析. 中国生态农业学报, 2013, 21(5): 519-525.
CHEN S Y, ZHANG X Y, SUN H Y, SHAO L W. Analysis on the causes of yield reduction of winter wheat under straw mulch in North China Plain. Chinese Journal of Eco-Agriculture, 2013, 21(5): 519-525. (in Chinese)
[39]
TANG H M, XIAO X P, TANG W G, LIN Y C, WANG K, YANG G L. Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice fields. PLoS ONE, 2014, 9(6): e100443.
[40]
范淼珍, 尹昌, 范分良, 宋阿琳, 王伯仁, 李冬初, 梁永超. 长期不同施肥对红壤碳、氮、磷循环相关酶活性的影响. 应用生态学报, 2015, 26(3): 833-838.
FAN M Z, YIN C, FAN F L, SONG A L, WANG B R, LI D C, LIANG Y C. Effects of different long-term fertilization on the activities of enzymes related to carbon, nitrogen, and phosphorus cycles in a red soil. Chinese Journal of Applied Ecology, 2015, 26(3): 833-838. (in Chinese)
[41]
ZHAO S C, LI K J, ZHOU W, QIU S J, HUANG S W, HE P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agriculture, Ecosystems & Environment, 2016, 216: 82-88.
[42]
林先贵, 冯有智. 潮土农田微生物研究进展. 中国生态农业学报, 2016, 24(4): 416-434.
LIN X G, FENG Y Z. Research progresses of farmland microorganisms in fluvo-aquic soil of China. Chinese Journal of Eco-Agriculture, 2016, 24(4): 416-434. (in Chinese)
[43]
郭伟, 周云鹏, 陈美淇, 李丹丹, 王青霞, 周谈坛, 赵炳梓. 秸秆与有机无机肥配施对潮土关键微生物及小麦产量的影响. 土壤学报, 2024, 61(4): 1134-1146.
GUO W, ZHOU Y P, CHEN M Q, LI D D, WANG Q X, ZHOU T T, ZHAO B Z. Effects of combined application of straw and organic- inorganic fertilizers on key microorganisms and wheat yield in fluvo-aquic soil. Acta Pedologica Sinica, 2024, 61(4): 1134-1146. (in Chinese)
[44]
练金山, 王慧颖, 徐明岗, 魏文良, 段英华, 刘树堂. 长期施用有机肥潮土细菌的多样性及功能预测. 植物营养与肥料学报, 2021, 27(12): 2073-2082.
LIAN J S, WANG H Y, XU M G, WEI W L, DUAN Y H, LIU S T. Bacterial diversity and functional prediction of long-term application of organic fertilizer in tidal soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2073-2082. (in Chinese)
[45]
周晶. 长期施氮对东北黑土微生物及主要氮循环菌群的影响[D]. 北京: 中国农业大学, 2017.
ZHOU J. Effects of long-term nitrogen application on microbes and main nitrogen circulating flora in black soil of Northeast China[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[46]
KLAUBAUF S, INSELSBACHER E, ZECHMEISTER-BOLTENSTERN S, WANEK W, GOTTSBERGER R, STRAUSS J, GORFER M. Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Diversity, 2010, 44(1): 65-75.

pmid: 23794962
[47]
WANG J T, ZHENG Y M, HU H W, ZHANG L M, LI J, HE J Z. Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem. Journal of Soils and Sediments, 2015, 15(5): 1224-1232.
[48]
MA A Z, ZHUANG X L, WU J M, CUI M M, D, LIU C Z, ZHUANG G Q. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil. PLoS ONE, 2013, 8(6): e66146.
[49]
罗嘉润, 宋文杰, 刘伟, 张大弘, 江勋, 卢碧林. 秸秆还田配施氮肥早期对水稻生长、土壤性质及微生物多样性的影响. 农业生物技术学报, 2023, 31(10): 2019-2034.
LUO J R, SONG W J, JIU W, ZHANG D H, JIANG X, LU B L. Effects of straw returning combined with nitrogen fertilizer on rice growth, soil properties and microbial diversity in early stage. Journal of Agricultural Biotechnology, 2023, 31(10): 2019-2034. (in Chinese)
[50]
赵金花, 陈林, 段衍, 张丛志, 马东豪, 张佳宝. 秸秆还田配合化肥减施对潮土作物产量及土壤肥力的影响. 土壤学报, 2023, 60(1): 189-200.
ZHAO J H, CHEN L, DUAN Y, ZHANG C Z, MA D H, ZHANG J B. Effects of straw returning instead of chemical fertilizer on crop yield and soil fertility in fluvo-aquic soil. Acta Pedologica Sinica, 2023, 60(1): 189-200. (in Chinese)
[51]
SONG Y, LI X N, YAO S, YANG X L, JIANG X. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation. The Science of the Total Environment, 2020, 728: 138439.
[52]
GE Z, LI S Y, BOL R, ZHU P, PENG C, AN T T, CHENG N, LIU X, LI T Y, XU Z Q, WANG J K. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition. Soil and Tillage Research, 2021, 213: 105120.
[53]
李月, 张水清, 韩燕来, 李世莹, 王祎, 李慧, 李芳, 谭金芳. 长期秸秆还田与施肥对潮土酶活性和真菌群落的影响. 生态环境学报, 2020, 29(7): 1359-1366.

doi: 10.16258/j.cnki.1674-5906.2020.07.010
LI Y, ZHANG S Q, HAN Y L, LI S Y, WANG Y, LI H, LI F, TAN J F. Effects on fluvo-aquic soil enzyme activity and fungal community of long-term straw returning and fertilization. Ecology and Environmental Sciences 2020, 29(7): 1359-1366. (in Chinese)
[54]
KOECHLI C, CAMPBELL A N, PEPE-RANNEY C, BUCKLEY D H. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing. Soil Biology and Biochemistry, 2019, 130: 150-158.
[55]
LINDAHL B D, FINLAY R D. Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi. The New Phytologist, 2006, 169(2): 389-397.
[56]
VAN DER WAL A, KLEIN GUNNEWIEK P, DE HOLLANDER M, DE BOER W. Fungal diversity and potential tree pathogens in decaying logs and stumps. Forest Ecology and Management, 2017, 406: 266-273.
[57]
LIN Y X, YE G P, KUZYAKOV Y, LIU D Y, FAN J B, DING W X. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 2019, 134: 187-196.
[58]
SULEIMAN A K A, LOURENÇO K S, PITOMBO L M, MENDES L W, ROESCH L F W, PIJL A, CARMO J B, CANTARELLA H, KURAMAE E E. Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N2O emissions. The Science of the Total Environment, 2018, 631/632: 1089-1099.
[59]
CHEN Q Y, LIU Z J, ZHOU J B, XU X P, ZHU Y J. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize-wheat rotation on China’s Loess Plateau. Science of the Total Environment, 2021, 775: 145930.
[60]
LEE S D. Phycicoccus jejuensis gen. nov., sp. nov., an actinomycete isolated from seaweed. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(10): 2369-2373.
[61]
ZHANG Q W, YANG Z L, ZHANG H, YI J. Recovery efficiency and loss of 15N-labelled urea in a rice-soil system in the upper reaches of the Yellow River Basin. Agriculture, Ecosystems & Environment, 2012, 158: 118-126.
[62]
WANG Q F, MA M C, JIANG X, ZHOU B K, GUAN D W, CAO F M, CHEN S F, LI J. Long-term N fertilization altered 13C-labeled fungal community composition but not diversity in wheat rhizosphere of Chinese black soil. Soil Biology and Biochemistry, 2019, 135: 117-126.
[1] ZHANG HaoXin, YU ShengYue, LEI QiuLiang, DU XinZhong, ZHANG Jizong, AN MiaoYing, FAN BingQian, LUO JiaFa, LIU HongBin. Simulating Soil Organic Carbon Dynamic Changes in Dryland and Paddy Field of Northeast China Using RothC Model [J]. Scientia Agricultura Sinica, 2025, 58(8): 1564-1578.
[2] MA YuJie, LI Xu, ZHAI YingFang, LI JingYu, FU Xin, PENG ZhengPing. Effects of Straw Returning Methods and Nitrogen Application Rates on Soil Organic Carbon Components and Enzyme Activity [J]. Scientia Agricultura Sinica, 2025, 58(12): 2397-2410.
[3] GAO YaFei, ZHAO YuanBo, XU Lin, SUN JiaYue, XIA YuXuan, XUE Dan, WU HaiWen, NING Hang, WU AnChi, WU Lin. Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(8): 1533-1546.
[4] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[5] SUN Yue, REN KeYu, ZOU HongQin, GAO HongJun, ZHANG ShuiQing, LI DeJin, LI BingJie, LIAO ChuQian, DUAN YingHua, XU MingGang. Effect of Long-Term Straw Returning on the Soil Organic Carbon Bound to Iron Oxides in Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3823-3834.
[6] LIU YaJie, ZHANG TianJiao, ZHANG XiangQian, LU ZhanYuan, LIU ZhanYong, CHENG YuChen, WU Di, LI JinLong. Effects of Tillage Methods Under Straw Returning on the Labile Organic Carbon Fractions and Carbon Pool Management Index in Black Soil Farmland [J]. Scientia Agricultura Sinica, 2024, 57(17): 3408-3423.
[7] YANG LiDa, PENG XinYue, ZHU WenXue, ZHAO Jing, YUAN XiaoTing, LIN Ping, LUO Kai, LI YiLing, LUO ChunMing, LI YuZe, YANG WenYu, YONG TaiWen. Effects of Straw Returning and Irrigation Methods on Seedling Emergence and Growth in Soybean and Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(17): 3366-3383.
[8] ZHANG XiaoQin, YIN Chang, LI Zheng, TANG Xu, LI Yan, WU ChunYan. Influences of Long-Term Appling Different Fertilizers on the Activities and Abundances of Canocial Ammonia Oxidizers and Comammox in Paddy Soil [J]. Scientia Agricultura Sinica, 2024, 57(14): 2803-2814.
[9] YANG WenHui, LUO HaoCheng, DONG ErWei, WANG JinSong, WANG Yuan, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Long-Term Fertilization and Deep Plough on Crop Potassium Utilization and Soil Potassium Forms in Maize-Sorghum Rotation System [J]. Scientia Agricultura Sinica, 2024, 57(12): 2390-2403.
[10] SHU XiaoWei, WANG ShuShen, FU Tong, WANG ZiHan, DING ZhouYu, YANG Ying, ZHAO ShiRu, ZHOU Juan, HUANG JianYe, YAO YouLi, WANG YuLong, DONG GuiChun. Response Difference and Its Cause Reasons for Simplified Panicle Fertilization in Different Rice Varieties After Wheat Straw Return [J]. Scientia Agricultura Sinica, 2024, 57(10): 1961-1978.
[11] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[12] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[13] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[14] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[15] ZHOU Ying, YANG Peng, WANG LiGang, LEI QiuLiang, ZHANG YaNan. Optimization Path of the Ecological Compensation Mechanism for Conservation Tillage in the Northeast Black Soil Region [J]. Scientia Agricultura Sinica, 2023, 56(22): 4478-4489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!