Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (13): 2645-2662.doi: 10.3864/j.issn.0578-1752.2025.13.012

• HORTICULTURE • Previous Articles     Next Articles

Multi-Omics Analysis Reveals the Changes of Monoterpenes and Anthocyanins Accumulation During Veraison in Red Muscat-Type Grape

WANG HuiLing1(), ZHANG YingYing1, YAN AiLing2, WANG XiaoYue3, LIU ZhenHua1, REN JianCheng1, XU HaiYing1(), SUN Lei1()   

  1. 1 Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093
    2 Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093
    3 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093
  • Received:2025-03-04 Accepted:2025-04-21 Online:2025-07-01 Published:2025-07-05

Abstract:

【Objective】 The accumulation of anthocyanins and monoterpenes during grape berry color change at both metabolic and transcriptional levels were analyzed, to explore the spatio-temporal synthesis mechanisms of anthocyanins and monoterpenes, and provide a theoretical basis for the regulation of anthocyanin and monoterpene synthesis in table grape. 【Method】 The grape berries of Ruiduhongyu were used as materials, sampling was started at 5 days before the veraison and continued until 40 days after the initial color change. The contents of total soluble solids and titratable acid in the berry samples were determined by conventional methods; The changes in monoterpene components and content in berries were determined with headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPEME-GC-MS); The content of total flavonoids and total anthocyanins were detected using a spectrophotometer; The expression changes of key genes involved in monoterpenes and anthocyanins synthesis were analyzed by transcriptome sequencing and real-time fluorescence quantitative PCR. 【Result】 With the advancement of the coloration process, the main components of 25 free and bound monoterpenes in the Ruiduhongyu berries fluctuated. Most of the free monoterpenes began to be synthesized in large quantities from the 20th day of coloration and reached the highest level at the 35-40 th day of coloration. The content of bound monoterpenes reached the highest level at 30 days after coloration. The content of bound monoterpenes was higher than that of free monoterpenes. Flavonoids were synthesized and accumulated in large quantities before the fruit coloration; the synthesis of anthocyanins was initiated along with the fruit coloration and reached the highest level at 20 days after coloration, followed by a slight decrease. Based on transcriptome sequencing, a total of 5 836 differentially expressed genes were identified, and the number of differentially expressed genes varied significantly among different developmental stages. The differentially expressed genes were enriched in the pathways of phenylalanine synthesis, flavonoid synthesis, and monoterpene synthesis. Among them, 14 differentially expressed genes were related to the monoterpene synthesis pathway, and 11 were related to the anthocyanin synthesis pathway. The expression patterns of these genes were consistent with the accumulation of monoterpenes and anthocyanins. Further correlation analysis screened out 24 transcription factors that were significantly correlated with the expression of multiple genes involved in the monoterpene and anthocyanin synthesis pathways. 【Conclusion】 The synthesis of anthocyanins in red Muscat type grape berries initiates earlier than that of the aroma compound monoterpenes, and the synthesis of the two types of compounds is regulated in a spatio-temporal pattern. The accumulation of monoterpenes and anthocyanins is closely related to the expression of multiple key enzyme genes in their synthesis pathways, and their synthesis is regulated at the transcriptional level of various genes.

Key words: grapes, monoterpenes, anthocyanins, fruit development, transcriptional regulation

Table 1

Different sampling date and phenotypes of Ruiduhongyu grape berry"

取样日期
Sampling date (M/D)
06/26 06/30 07/04 07/09 07/13 07/18 07/22 07/27 08/02 08/07
转色天数
Days after veraison (d)
-5 0 5 10 15 20 25 30 35 40
果实表型
Grape berry phenotype
表型描述
Phenotype description
果实硬未
着色
Berries hard and not coloured
个别果实
着色Individual berries coloured
果实1/4
着色
1/4 of berreis coloured
果实1/2
着色
1/2 of berreis coloured
果实2/3
着色
2/3 of berreis coloured
全部果实
着色
All of berreis coloured
果实已发甜
淡香
Berries with light Muscat flavor
果实香气明显
Berries with obvious Muscat flavor
果实香甜
Berries sweet and with strong Muscat flavor
果实香甜
Berries sweet and with strong Muscat flavor

Table 2

The list of primers"

基因Gene 基因ID 引物序列Primers sequence (5′-3′)
CHS Vitvi14g01449 F:GAAGATGGGAATGGCTGCTG
R:AAGGCACAGGGACACAAAAG
CHS Vitvi05g01044 F:TCGGCTGAGGAAGGGCTGAA
R:GGCAAGTAAAGTGGAAACAG
DFR Vitvi18g00988 F:GAAACCTGTAGATGGCAGGA
R:GGCCAAATCAAACTACCAGA
ANS Vitvi02g00435 F:AGGGAAGGGAAAACAAGTAG
R:ACTCTTTGGGGATTGACTGG
UFGT Vitvi16g00156 F:GGGATGGTAATGGCTGTGG
R:ACATGGGTGGAGAGTGAGTT
DXS Vitvi04g00438 F:GAAGGCTCTGTTGGAGGGTTT
R:TCCTCTGGTGATGCCTGTTCT
DXR Vitvi17g00816 F:ATTGCTTATGGCAGGCGAAA
R:CCGTTCCGATCTTACCAATCAC
HDR Vitvi03g00374 F:ATTGCTTATGGCAGGCGAAA
R:CCGTTCCGATCTTACCAATCAC
TPS Vitvi10g02129 F:TGAAGGGAATGCTCTGCTTGT
R:TGTTTTGCTCAAGGCCCTTT
TPS Vitvi12g00574 F:TGGGATTCTCTCCTGCCTTTT
R:GCAGTAGGCACAAGCACAACA
VvGAPDH -- F:TTCTCGTTGAGGGCTATTCCA
R:CCACAGACTTCATCGGTGACA

Table 3

Characteristics of physical and chemical indicators during veraison"

理化指标
Physical and chemical indicators
转色天数Days after veraison (d)
-5 0 5 10 15 20 25 30 35 40
可溶性固形物
Soluble solids (Brix°)
4.33±0.81 6.13±1.00 7.23±1.04 10.63±0.49 13.30±0.26 14.33±0.90 15.03±0.57 16.63±0.95 17.93±0.15 18.13±1.01
可滴定酸含量
Titrable acid content (g·L-1)
31.11±4.92 29.53±4.64 20.22±2.15 16.57±1.44 14.56±1.00 13.48±1.24 12.72±1.69 9.85±0.86 9.43±1.30 6.27±0.13

Table 4

Changes in the content of free monoterpenes in Ruiduhongyu at different development stage"

编号
Code
化合物
Compound
转色天数Days after veraison (d)
-5 0 5 10 15 20 25 30 35 40
M1 β-月桂烯 β-myrcene 2.60±0.35f 1.30±0.22f 2.82±0.34f 2.54±0.20f 7.29±1.06f 16.92±7.17e 38.66±1.55d 74.09±2.91c 108.39±27.40b 178.44±13.15a
M2 柠檬烯 Limonene 5.56±2.06g 2.09±0.02h 2.03±0.40h 6.93±0.42g 12.12±1.49f 24.16±1.89e 39.77±6.41d 94.18±2.24b 124.84±32.18a 80.30±11.58c
M3 水芹烯 Phellandrene 2.40±0.50de 1.11±0.33e 0.20±0.01f 2.77±0.06de 2.07±0.78de 3.80±0.67d 5.64±2.40c 13.75±3.88b 20.52±4.78a 23.36±13.01a
M4 β-trans-罗勒烯 β-trans-ocimene 2.50±0.38g 3.96±0.10f 1.27±0.45h 2.06±0.45g 5.54±0.21e 11.42±0.67d 18.37±3.75c 40.77±9.48b 61.15±10.73a 46.23±7.99b
M5 γ-松油烯 γ-terpinen 39.04±4.23a 22.94±2.69c 0.26±0.04e 31.82±1.62b 10.07±0.52d 9.66±0.24d 8.96±1.97d 26.14±5.04c 30.73±1.05b 24.48±1.70c
M6 β-cis-罗勒烯 β-cis-ocimene 5.02±2.21e 2.27±0.57f 2.34±0.95f 3.72±0.49f 7.87±0.62e 18.87±2.09d 31.23±1.07c 77.18±2.27b 123.07±24.11a 102.41±34.07a
M7 异松油烯 Terpinolen 27.83±2.16f 15.09±1.69g 5.26±0.44h 27.13±0.77f 29.82±3.73f 67.28±5.11e 85.46±9.71d 236.50±6.25b 307.25±17.54a 134.64±3.72c
M8 cis-氧化玫瑰 cis-rose oxide 0.06±0.01e 0.14±0.09d 0.05±0.01e 0.23±0.04c 0.32±0.09c 0.45±0.06c 0.89±0.07bc 3.64±1.13ab 3.49±0.85ab 4.11±0.38a
M9 trans-氧化玫瑰 trans-rose oxide tr tr tr 0.01±0.00e 0.12±0.01d 0.26±0.08c 0.50±0.04b 0.42±0.03b 0.52±0.03b 1.41±0.93a
M10 别罗勒烯 Allo-ocimene 0.51±0.06ef 0.23±0.05g 0.23±0.10g 0.39±0.02f 0.73±0.05e 1.51±0.09d 3.10±0.67c 5.96±0.82b 9.87±2.05a 9.62±1.18a
M11 (E,Z)-别罗勒烯 (E,Z)-allo-ocimene 0.07±0.01d 0.10±0.05d 0.07±0.01d 0.08±0.01d 0.13±0.02d 0.07±0.01 0.46±0.08c 0.85±0.05b 3.61±0.89a 3.48±0.84a
M12 cis-呋喃型氧化里那醇 cis-furan linalool oxide 53.53±7.36d 28.46±7.19e 8.69±1.47f 137.06±4.14c 53.90±6.79d 114.12±8.85c 73.56±8.32d 355.45±14.61a 388.61±11.61a 261.67±4.96b
M13 trans-呋喃型氧化锂 trans-furan linalool oxide 22.23±3.11ef 16.89±1.77f 11.92±1.70f 51.54±1.24d 30.79±1.10e 77.88±3.00d 138.38±7.31c 372.01±11.36b 455.65±13.61a 392.81±17.64b
M14 橙花醚 Nerol oxide 59.85±9.59c 34.08±3.69d 5.58±1.38e 123.02±3.22a 45.24±2.42cd 63.16±4.75c 48.00±5.58cd 128.91±45.36a 111.53±4.52b 32.10±1.38d
M15 里那醇 Linalool 33.78±9.91g 27.38±0.46g 36.57±2.52g 35.43±6.51g 94.09±5.18f 215.72±9.69e 423.10±18.52d 721.67±21.95c 1171.90±30.92b 1681.14±10.29a
M16 脱氢里那醇 Hortrineol 207.67±7.24cd 120.13±4.19d 21.69±6.52e 425.52±17.53b 180.12±8.21d 339.03±25.02c 249.76±40.37cd 824.44±18.52a 848.21±26.92a 268.17±13.84bc
M17 4-松油烯醇 4-terpineol 6.98±1.39c 3.35±0.97d 0.74±0.22e 8.40±0.20c 2.86±0.38d 90.97±14.34a 5.42±0.83cd 18.74±0.86b 24.37±1.65b 6.28±1.08c
M18 橙花醛 Neral 0.60±0.01c 0.59±0.01c 0.60±0.01c 0.59±0.01c 0.59±0.01c 0.59±0.01c 0.59±0.01c 0.99±0.07b 1.25±0.14a 1.00±0.37b
M19 α-萜品醇 α-terpineol 13.71±3.84f 7.59±0.26g 8.95±2.03g 18.15±2.36f 31.28±1.57e 79.86±5.54d 91.13±2.33d 309.53±7.91b 432.38±10.32a 162.71±3.98c
M20 香叶醛 Geranial 0.56±0.01d 0.65±0.15d 0.62±0.08d 0.57±0.02d 0.82±0.04cd 1.12±0.09c 1.96±0.05b 2.12±0.61b 3.11±0.77a 3.60±0.62a
M21 β-香茅醇 β-citronellol tr tr tr tr tr tr tr 0.19±0.02c 7.52±0.38b 23.55±4.78a
M22 γ-香叶醇 γ-geraniol 9.62±0.03c 9.70±0.11c 9.60±0.01c 9.60±0.01c 9.69±0.05c 9.67±0.07c 9.75±0.15b 9.84±0.07b 9.98±0.13b 10.68±0.23a
M23 橙花醇 Nerol 1.26±0.13e 1.22±0.16e 1.24±0.19e 1.25±0.21e 2.69±0.52e 5.99±0.26d 9.45±0.39c 24.61±7.93b 39.14±8.73a 26.89±1.74b
M24 香叶醇 Geraniol 12.06±1.69e 12.57±3.50e 15.85±2.41e 11.62±1.73e 15.63±2.13e 26.81±1.05d 36.67±2.00c 89.12±2.63b 130.10±26.25a 95.13±3.36b
M25 香叶酸 Geranic acid 133.91±7.91c 62.51±3.47d 286.98±6.28bc 197.28±7.48c 144.51±2.96c 111.57±6.58cd 315.79±19.39b 244.17±10.13c 321.73±11.41b 1079.00±13.53a

Table 5

Changes in the content of bound monoterpenes in Ruiduhongyu at different development stage"

编号
Code
化合物
Compound
转色天数Days after veraison (d)
-5 0 5 10 15 20 25 30 35 40
CM1 β-月桂烯 β-Myrcene 0.92±0.70d 0.45±0.25d 1.77±0.55d 0.59±0.07d 1.18±0.50d 5.51±0.48c 5.66±1.60c 43.67±2.28a 29.63±6.93b 32.36±8.12b
CM2 柠檬烯 Limonene tr tr tr tr tr 2.11±0.49c 2.17±0.36c 12.11±6.00a 8.95±2.29b 8.71±1.48b
CM3 水芹烯 Phellandrene 1.04±0.07d 1.12±0.24d 1.37±0.05d 1.05±0.17d 1.18±0.25d 1.98±0.29c 2.15±0.33c 8.31±1.29a 5.77±1.11b 5.86±1.79b
CM4 β-trans-罗勒烯 β-trans-Ocimene 3.93±0.13c 4.01±0.36c 4.27±0.11c 3.88±0.10c 3.98±0.01c 4.54±0.10c 4.42±0.06c 12.58±4.23a 10.20±2.58a 8.80±2.59b
CM5 γ-松油烯 γ-terpinen 0.89±0.02c 0.88±0.02c 0.98±0.15c 0.92±0.07c 0.87±0.01c 1.10±0.01c 1.19±0.25c 3.51±1.11a 2.72±0.63b 2.20±0.67b
CM6 β-cis-罗勒烯 β-cis-ocimene 0.41±0.16e 0.34±0.17e 0.83±0.16d 0.25±0.12e 0.25±0.02e 0.92±0.02d 0.80±0.08d 16.38±1.94a 12.16±1.14b 8.76±1.67c
CM7 异松油烯 Terpinolen 2.85±0.03c 2.84±0.02c 2.93±0.09c 2.94±0.19c 2.93±0.10c 3.36±0.03c 3.24±0.03c 14.30±3.84a 9.43±1.62b 8.06±1.58b
CM8 cis-氧化玫瑰 cis-rose oxide 0.05±0.03e 0.02±0.01e 0.24±0.09d 0.45±0.14c 0.18±0.02d 0.67±0.13c 0.24±0.03d 8.05±1.09a 4.35±0.49b 3.19±1.28b
CM9 trans-氧化玫瑰 trans-rose oxide tr tr 0.05±0.02d 0.20±0.12c 0.15±0.03c 0.36±0.02c 0.15±0.03c 2.69±1.03a 1.47±0.18b 1.15±0.66b
CM10 别罗勒烯 Allo-ocimene 0.32±0.01c 0.32±0.01c 0.31±0.01c 0.32±0.01c 0.31±0.01c 0.35±0.01c 0.37±0.05c 1.31±0.48a 1.16±0.35b 1.09±0.41b
CM11 (E,Z)-别罗勒烯 (E,Z)-allo-ocimene 0.32±0.01b 0.32±0.01b 0.32±0.01b 0.33±0.01b 0.32±0.01b 0.32±0.01b 0.36±0.08b 0.32±0.01b 0.32±0.01b 0.80±0.32a
CM12 cis-呋喃型氧化里那醇
cis-furan linalool oxide
tr tr tr 25.32±0.64f 35.03±7.97f 99.83±10.63d 53.86±15.73e 271.65±10.41a 123.31±6.14c 207.24±10.93b
CM13 trans-呋喃型氧化里那醇
trans-furan linalool oxide
0.68±0.06f 13.72±0.89e 13.89±0.92e 74.96±9.73cd 58.69±5.42d 111.21±6.56c 147.48±6.89b 189.59±8.23a 59.87±2.64d 54.76±10.07d
CM14 橙花醚 Nerol oxide 5.73±0.21c 5.89±0.24c 6.04±0.18c 7.71±1.00c 7.23±0.21c 9.17±0.27c 7.45±0.15c 42.73±2.38a 21.14±2.19b 14.26±5.82b
CM15 里那醇 Linalool 74.38±0.94d 74.34±0.22d 74.08±0.28d 75.48±1.22d 85.82±5.58d 129.29±8.93c 124.43±1.56c 573.48±15.88a 491.72±12.85b 479.38±12.96b
CM16 脱氢里那醇 Hortrineol tr tr tr tr tr 1.60±0.23c 0.59±0.16c 13.09±1.87a 4.63±1.01b 3.85±1.08b
CM17 4-松油烯醇 4-terpineol 0.01±0.01e 0.07±0.01e tr 0.51±0.03c 0.15±0.06d 0.42±0.07c 0.09±0.03 1.88±0.09a 0.91±0.34b 0.25±0.17d
CM18 橙花醛 Neral 3.75±0.41d 4.33±0.76d 5.84±0.87d 7.18±0.92d 4.63±0.40d 7.15±1.01d 5.91±0.42d 72.96±6.41a 45.43±9.07b 33.34±2.49c
CM19 α-萜品醇 α-Terpineol 15.71±0.82c 17.26±1.79c 15.37±0.07c 17.72±0.92c 16.63±0.23c 17.60±0.12c 16.88±0.19c 34.62±7.86a 24.72±2.75b 25.00±5.44b
CM20 香叶醛 Geranial 6.69±0.41d 5.98±0.78d 9.26±1.34d 6.21±2.17d 4.39±0.12d 7.34±0.78d 5.13±0.18d 73.46±8.27a 41.28±8.21b 24.94±6.29c
CM21 β-香茅醇 β-citronellol 13.93±0.95c 12.26±1.07c 38.29±5.65b 3.48±0.82d 1.24±0.33d 3.57±0.12d 2.67±0.07d 61.64±2.32a 69.47±1.74a 43.93±8.31b
CM22 γ-香叶醇 γ-geraniol 48.41±0.18b 48.46±0.13b 48.81±0.11b 48.40±0.27b 48.14±0.01b 48.30±0.02b 48.25±0.02b 52.58±1.66a 52.13±1.11a 50.26±1.53a
CM23 橙花醇 Nerol 11.97±3.24d 11.14±3.95d 23.04±2.47c 12.83±4.71d 10.13±0.79d 13.65±0.35d 15.12±0.72d 167.79±9.75a 189.67±7.69a 84.789±6.46b
CM24 香叶醇 Geraniol 73.19±9.26d 68.61±7.84d 94.70±7.36c 57.93±6.71e 52.16±0.54e 58.05±0.41e 54.94±0.68e 204.72±12.03a 172.01±2.40b 109.69±5.42c
CM25 香叶酸 Geranic acid 408.62±4.38d 533.26±24.91d 1166.52±26.38c 549.90±13.00d 331.97±2.15e 488.75±40.30d 358.36±22.79 5316.57±20.97a 2687.36±64.58b 1062.64±61.19c

Fig. 1

Changes in the content of free (A) and glycosidically-bound (B) monoterpenes in grape berries during veraison"

Fig. 2

Changes in the content of total monoterpenes, flavonoids and anthocyanins in grape fruits during veraison Different letters stand for the significant difference (P<0.05)"

Table 6

Transcriptome sequencing quality analysis"

样本Sample 干净读数
Clean data (Gb)
测序准确度
Q20 (%)
测序准确度
Q30 (%)
GC含量
GC content (%)
总比对
Total map (%)
特异比对率
Unique map (%)
5_1 6.71 97.00 91.90 46.72 94.51 82.38
5_2 7.74 97.34 92.46 46.75 98.54 86.19
5_3 8.18 97.32 92.38 46.87 92.65 80.54
20_1 7.17 97.08 92.18 46.45 97.80 86.99
20_2 7.14 96.76 91.47 46.60 95.11 82.46
20_3 7.04 97.08 91.78 46.64 92.02 89.53
30_1 7.23 97.08 92.12 46.24 95.02 85.76
30_2 6.52 97.25 92.20 46.35 95.84 82.88
30_3 7.46 96.99 91.95 46.17 97.56 84.45
40_1 7.28 97.05 92.09 46.24 90.92 87.58
40_2 6.91 97.07 92.04 46.37 96.18 86.33
40_3 7.21 97.28 92.46 46.36 98.34 86.70

Fig. 3

Transcriptional differences in grape berries at different development stages"

Fig. 4

The differential expression of monoterpene and anthocyanins biosynthesis pathway genes in grape berries at different development stages"

Fig. 5

Correlation analyses between transcription factors and monoterpene (A) and anthocyanin (B) biosynthesis pathways gene expression"

Fig. 6

Relative expression levels of monoterpene (A) and anthocyanin (B) biosynthesis pathway genes in grape berries during veraison"

[1]
张国军, 闫爱玲, 孙磊, 王晓玥, 王慧玲, 任建成, 徐海英. 早熟、红色玫瑰香味葡萄新品种‘瑞都红玉’的选育. 果树学报, 2016, 33(12): 1592-1595.
ZHANG G J, YAN A L, SUN L, WANG X Y, WANG H L, REN J C, XU H Y. A new early ripening red table grape cultivar with Muscat flavor ‘Ruidu Hongyu'. Journal of Fruit Science, 2016, 33(12): 1592-1595. (in Chinese)
[2]
MELE M A, KANG H M, LEE Y T, ISLAM M Z. Grape terpenoids: Flavor importance, genetic regulation, and future potential. Critical Reviews in Food Science and Nutrition, 2021, 61(9): 1429-1447.
[3]
DUCHÊNE E, BUTTERLIN G, CLAUDEL P, DUMAS V, JAEGLI N, MERDINOGLU D. A grapevine (Vitis vinifera L.) deoxy-d- xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theoretical and Applied Genetics, 2009, 118(3): 541-552.
[4]
BATTILANA J, COSTANTINI L, EMANUELLI F, SEVINI F, SEGALA C, MOSER S, VELASCO R, VERSINI G, GRANDO M S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theoretical and Applied Genetics, 2009, 118(4): 653-669.
[5]
EMANUELLI F, BATTILANA J, COSTANTINI L, LE CUNFF L, BOURSIQUOT J M, THIS P, GRANDO M S. A candidate gene association study on Muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biology, 2010, 10: 241.
[6]
WANG W, FENG J, WEI L L, KHALIL-UR-REHMAN M, NIEUWENHUIZEN N J, YANG L N, ZHENG H, TAO J M. Transcriptomics integrated with free and bound terpenoid aroma profiling during “shine Muscat” (Vitis labrusca × V. vinifera) grape berry development reveals coordinate regulation of MEP pathway and terpene synthase gene expression. Journal of Agricultural and Food Chemistry, 2021, 69(4): 1413-1429.
[7]
LENG X P, CONG J M, CHENG L X, WAN H L, LIU Y X, YUAN Y B, FANG J G. Identification of key gene networks controlling monoterpene biosynthesis during grape ripening by integrating transcriptome and metabolite profiling. Horticultural Plant Journal, 2023, 9(5): 931-946.
[8]
YUE X F, JU Y L, ZHANG H J, WANG Z H, XU H D, ZHANG Z W. Integrated transcriptomic and metabolomic analysis reveals the changes in monoterpene compounds during the development of Muscat Hamburg (Vitis vinifera L.) grape berries. Food Research International, 2022, 162: 112065.
[9]
XIE S, WU G, REN R H, XIE R, YIN H N, CHEN H W, YANG B W, ZHANG Z W, GE M S. Transcriptomic and metabolic analyses reveal differences in monoterpene profiles and the underlying molecular mechanisms in six grape varieties with different flavors. LWT, 2023, 174: 114442.
[10]
WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015, 15: 240.
[11]
COSTANTINI L, KAPPEL C D, TRENTI M, BATTILANA J, EMANUELLI F, SORDO M, MORETTO M, CAMPS C, LARCHER R, DELROT S, GRANDO M S. Drawing links from transcriptome to metabolites: The evolution of aroma in the ripening berry of moscato bianco (Vitis vinifera L.). Frontiers in Plant Science, 2017, 8: 780.
[12]
ZHANG Y Y, LIU C X, LIU X J, WANG Z M, WANG Y, ZHONG G Y, LI S H, DAI Z W, LIANG Z C, FAN P G. Basic leucine zipper gene VvbZIP61 is expressed at a quantitative trait locus for high monoterpene content in grape berries. Horticulture Research, 2023, 10(9): uhad151.
[13]
ZHANG C, DAI Z W, FERRIER T, ORDUÑA L, SANTIAGO A, PERIS A, WONG D C J, KAPPEL C, SAVOI S, LOYOLA R, et al. MYB 24 orchestrates terpene and flavonol metabolism as light responses to anthocyanin depletion in variegated grape berries. The Plant Cell, 2023, 35(12): 4238-4265.
[14]
HE F, MU L, YAN G L, LIANG N N, PAN Q H, WANG J, REEVES M J, DUAN C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15(12): 9057-9091.

doi: 10.3390/molecules15129057 pmid: 21150825
[15]
BOSS P K, DAVIES C, ROBINSON S P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Molecular Biology, 1996, 32(3): 565-569.

pmid: 8980508
[16]
AZUMA A. Genetic and environmental impacts on the biosynthesis of anthocyanins in grapes. The Horticulture Journal, 2018, 87(1): 1-17.
[17]
郑天一, 胡玉杰, 张学昊, 李婉平, 房玉林, 张克坤, 陈可钦. 激素信号调控果树果实花色苷合成机制研究进展. 园艺学报, 2023, 50(11): 2516-2536.

doi: 10.16420/j.issn.0513-353x.2022-1038
ZHENG T Y, HU Y J, ZHANG X H, LI W P, FANG Y L, ZHANG K K, CHEN K Q. Advances in the regulation of anthocyanin biosynthesis by hormone signaling in fruit trees. Acta Horticulturae Sinica, 2023, 50(11): 2516-2536. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2022-1038
[18]
WANG X Y, GAO Y, WU X P, WEN X H, LI D Q, ZHOU H, LI Z, LIU B, WEI J F, CHEN F, CHEN F, ZHANG C J, ZHANG L S, XIA Y P. High-quality evergreen Azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution. Plant Biotechnology Journal, 2021, 19(12): 2544-2560.

doi: 10.1111/pbi.13680 pmid: 34375461
[19]
CRAVERO M C, GUIDONI S, SCHNEIDER A, DI STEFANO R. Morphological and biochemical characterisation of coloured berry- Muscat grapevine cultivars. Vitis, 1994, 33(2): 75-80.
[20]
LI Y Q, BAO T T, ZHANG J, LI H J, SHAN X T, YAN H J, KIMANI S, ZHANG L S, GAO X. The coordinated interaction or regulation between floral pigments and volatile organic compounds. Horticultural Plant Journal, 2025, 11(2): 463-485.
[21]
WANG H L, WANG W, ZHANG P, PAN Q H, ZHAN J C, HUANG W D. Gene transcript accumulation, tissue and subcellular localization of anthocyanidin synthase (ANS) in developing grape berries. Plant Science, 2010, 179(1/2): 103-113.
[22]
BOSS P K, DAVIES C, ROBINSON S P. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiology, 1996, 111(4): 1059-1066.
[23]
孙磊, 朱保庆, 孙晓荣, 许晓青, 王晓玥, 张国军, 闫爱玲, 徐海英. ‘亚历山大’葡萄果实单萜生物合成相关基因转录及萜类物质积累规律. 中国农业科学, 2014, 47(7): 1379-1386. doi: 10.3864/j.issn.0578-1752.2014.07.015.
SUN L, ZHU B Q, SUN X R, XU X Q, WANG X Y, ZHANG G J, YAN A L, XU H Y. Terpenes biosynthesis related gene transcript profiles and terpenes accumulation of ‘Alexandria’ grape. Scientia Agricultura Sinica, 2014, 47(7): 1379-1386. doi: 10.3864/j.issn.0578-1752.2014.07.015. (in Chinese)
[24]
WANG H L, YAN A L, WANG X Y, ZHANG G J, LIU Z H, XU H Y, SUN L. Identification of QTLs and candidate genes controlling berry size in table grape by integrating QTL and transcriptomic analysis. Scientia Horticulturae, 2022, 305: 111403.
[25]
ROBINSON S P, DAVIES C. Molecular biology of grape berry ripening. Australian Journal of Grape and Wine Research, 2000, 6(2): 175-188.
[26]
ZHOU X M, LIU S Y, GAO W P, HU B F, ZHU B Q, SUN L. Monoterpenoids evolution and MEP pathway gene expression profiles in seven table grape varieties. Plants, 2022, 11(16): 2143.
[27]
LI X Y, YAN Y X, WANG L, LI G H, WU Y S, ZHANG Y, XU L R, WANG S P. Integrated transcriptomic and metabolomic analysis revealed abscisic acid-induced regulation of monoterpene biosynthesis in grape berries. Plants, 2024, 13(13): 1862.
[28]
WANG X Y, WANG H L, ZHANG G J, YAN A L, REN J C, LIU Z H, XU H Y, SUN L. Effects of fruit bagging treatment with different types of bags on the contents of phenolics and monoterpenes in Muscat-flavored table grapes. Horticulturae, 2022, 8(5): 411.
[29]
RUIZ-GARCÍA L, HELLÍN P, FLORES P, FENOLL J. Prediction of Muscat aroma in table grape by analysis of rose oxide. Food Chemistry, 2014, 154: 151-157.
[30]
MARTIN D M, CHIANG A, LUND S T, BOHLMANN J. Biosynthesis of wine aroma: Transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/ nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 2012, 236(3): 919-929.
[31]
王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 低温贮藏对鲜食葡萄果实中单萜化合物的影响. 中国农业科学, 2021, 54(1): 164-178. doi: 10.3864/j.issn.0578-1752.2021.01.012.
WANG H L, YAN A L, SUN L, ZHANG G J, WANG X Y, REN J C, XU H Y. Effects of low temperature storage on monoterpenes in table grape. Scientia Agricultura Sinica, 2021, 54(1): 164-178. doi: 10.3864/j.issn.0578-1752.2021.01.012. (in Chinese)
[32]
WU Y S, ZHANG W W, SONG S R, XU W P, ZHANG C X, MA C, WANG L, WANG S P. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca × V. vinifera). Food Chemistry, 2020, 309: 125778.
[33]
LUAN F, MOSANDL A, MÜNCH A, WÜST M. Metabolism of geraniol in grape berry mesocarp of Vitis vinifera L. cv. Scheurebe: demonstration of stereoselective reduction, E/Z-isomerization, oxidation and glycosylation. Phytochemistry, 2005, 66(3): 295-303.
[34]
ILC T, WERCK-REICHHART D, NAVROT N. Meta-analysis of the core aroma components of grape and wine aroma. Frontiers in Plant Science, 2016, 7: 1472.

pmid: 27746799
[35]
PAUN N, BOTORAN O R, NICULESCU V C. Total phenolic, anthocyanins HPLC-DAD-MS determination and antioxidant capacity in black grape skins and blackberries: a comparative study. Applied Sciences, 2022, 12(2): 936.
[36]
PU X J, DONG X M, LI Q, CHEN Z X, LIU L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. Journal of Integrative Plant Biology, 2021, 63(7): 1211-1226.

doi: 10.1111/jipb.13076
[37]
MARTIN D M, AUBOURG S, SCHOUWEY M B, DAVIET L, SCHALK M, TOUB O, LUND S T, BOHLMANN J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biology, 2010, 10(1): 226.
[38]
DEGENHARDT J, KÖLLNER T G, GERSHENZON J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70(15/16): 1621-1637.
[39]
YANG C L, LI Y Z, HE L L, SONG Y H, ZHANG P, LIU S J. Metabolomic and transcriptomic analyses of monoterpene biosynthesis in Muscat and Neutral grape hybrids. Scientia Horticulturae, 2024, 336: 113434.
[40]
BOSMAN R N, LASHBROOKE J G. Grapevine mono- and sesquiterpenes: Genetics, metabolism, and ecophysiology. Frontiers in Plant Science, 2023, 14: 1111392.
[41]
LIU X Y, HAN Y, LUO L, PAN H T, CHENG T R, ZHANG Q X. Multiomics analysis reveals the mechanisms underlying the different floral colors and fragrances of Rosa hybrida cultivars. Plant Physiology and Biochemistry, 2023, 195: 101-113.
[42]
YANG J W, REN Y J, ZHANG D Y, CHEN X W, HUANG J Z, XU Y, AUCAPIÑA C B, ZHANG Y, MIAO Y. Transcriptome-based WGCNA analysis reveals regulated metabolite fluxes between floral color and scent in Narcissus tazetta flower. International Journal of Molecular Sciences, 2021, 22(15): 8249.
[1] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[2] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[3] RUAN QiaoJun, MAO MiaoMiao, ZHANG YuanYuan, LIN XiaoRong, CHEN ZhongZheng. Screening of Transcription Factors for Key Enzyme Gene CsAlaDC Involved in Ethylamine Synthesis in Yinghong 9 (Camellia sinensis) [J]. Scientia Agricultura Sinica, 2025, 58(12): 2427-2438.
[4] CAO XiongJun, WANG Bo, HAN JiaYu, LIAO YongFeng, XIE ShuYu, BAI Yang, HUANG XiaoYun, LU Li, HUANG QiuMi, JIANG ChunFen, PAN FengPing, BAI XianJin. Research and Practice on High Photosynthetic Efficiency Breeding of Grapes in Hot Climate Regions [J]. Scientia Agricultura Sinica, 2025, 58(10): 1994-2007.
[5] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[6] YIN YuQin, XU HuanHuan, TANG LiPing, WANG XinYa, HU ChunMei, HOU XiLin, LI Ying. Genome-Wide Identification of GST Gene Family and Functional Analysis of the BcGSTF6 Gene Related to Anthocyanin in Pak Choi [J]. Scientia Agricultura Sinica, 2024, 57(16): 3234-3249.
[7] ZHANG Jian, ZHAO BinSen, FENG Hao, HUANG LiLi. Function and Mechanism Analysis of Vm-milRN7 Regulating the Pathogenicity of Valsa mali [J]. Scientia Agricultura Sinica, 2024, 57(10): 1930-1942.
[8] GE TianCheng, YIN Fei, HU QiongBo, PENG ZhengKe, LI ZhenYu. Function of MBF2 Transcriptionally Regulating Glutathione S-transferase Metabolizing Chlorantraniliprole in Plutella xylostella [J]. Scientia Agricultura Sinica, 2023, 56(4): 665-673.
[9] ZHU PeiPei, QIN HaoXiang, ZHANG JianXia. Changes of Endogenous Hormones and Polyamines During Ovule Development of Stenospermocarpic Seedless Grape [J]. Scientia Agricultura Sinica, 2023, 56(23): 4789-4800.
[10] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[11] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[12] ZHANG Jie, JIANG ChangYue, WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[13] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[14] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[15] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!