Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 665-673.doi: 10.3864/j.issn.0578-1752.2023.04.006

• PLANT PROTECTION • Previous Articles     Next Articles

Function of MBF2 Transcriptionally Regulating Glutathione S-transferase Metabolizing Chlorantraniliprole in Plutella xylostella

GE TianCheng1,2(), YIN Fei1(), HU QiongBo2, PENG ZhengKe1, LI ZhenYu1   

  1. 1Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640
    2College of Plant Protection, South China Agricultural University, Guangzhou 510642
  • Received:2022-10-11 Accepted:2022-11-12 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】The objective of this study is to explore the regulation function of transcription regulation factor MBF2 (multiprotein bridging factor 2) on glutathione S-transferase (GST) in Plutella xylostella and its role in resistance to chlorantraniliprole, and to provide a theoretical basis for clarifying the metabolic mechanism of P. xylostella to detoxify chlorantraniliprole. 【Method】The resistance level of P. xylostella to chlorantraniliprole in three populations, susceptible (SS), Lianzhou (LZ) and Tonghai (TH), was determined by leaf dipping method and the GST activity of three populations was measured by enzyme kinetic method. Real-time quantitative PCR (RT-qPCR) was used to analyze the expression difference of MBF2 in different P. xylostella populations. After induction for 12 h under the LC50 of chlorantraniliprole, the induced expression level of MBF2 in different populations was analyzed. The regulatory role of MBF2 on specific GST genes was confirmed by RNA interference (RNAi) and the GST activity of MBF2-silenced P. xylostella was analyzed. Susceptibility variations of MBF2-silenced P. xylostella populations to chlorantraniliprole were conducted by leaf dipping method, which support that MBF2 influenced the resistance of P. xylostella to chlorantraniliprole. 【Result】The TH population was moderately resistant and LZ population was highly resistant to chlorantraniliprole when respectively compared to susceptible population (SS), with the resistance ratio of 54.27 and 289.58. The GST activity of TH and LZ populations was significantly higher than that of SS population. Compared with SS population, MBF2 was significantly up-regulated in resistant populations, and the expression level of MBF2 in the moderately resistant and highly resistant populations was 4.6 and 9.4 times that of susceptible population, respectively. When P. xylostella was exposed to chlorantraniliprole at LC50 for a short time, the expression levels of MBF2 in susceptible, moderately resistant and highly resistant populations were significantly increased within 8 hours, and the highest expression was 10 times that of the control. After RNAi treatment for 24 hours, the expression levels of 9 GST genes in MBF2-silenced P. xylostella were significantly decreased, and GSTZ1 as well as GSTU1 decreased by more than 90%. Compared with the negative control (dsGFP), the GST activity in the treatment group (dsMBF2) decreased by 57.76%. After treatment with 75 mg·L-1 chlorantraniliprole, the mortality in the treatment group increased by 23.34% compared with the control group. 【Conclusion】It is speculated that MBF2 improves the metabolism of chlorantraniliprole by regulating the transcription of GSTs, thereby participating in the detoxification effect of P. xylostella to chlorantraniliprole. The results can provide experimental basis for further analysis of P. xylostella resistance mechanisms to insecticides and research as well as development of new insecticides.

Key words: Plutella xylostella, transcriptional regulation, glutathione S-transferase (GST), chlorantraniliprole, insecticide resistance, MBF2

Table 1

Toxicity of chlorantraniliprole on three P. xylostella populations"

种群
Population
斜率
Slope (mean±SE)
LC50 95%置信区间
Confidence interval (mg·L-1)
相关系数
Relevant coefficient
χ2
(df)
抗性倍数
Resistance ratio
SS 2.60±0.34 0.26 (0.19-0.38) 0.995 0.59 (3) -
TH 2.72±0.49 14.11 (10.23-18.74) 0.932 5.74 (3) 54.27
LZ 2.86±0.52 75.29 (55.50-108.41) 0.981 0.82 (3) 289.58

Table 2

GST activity of different P. xylostella populations"

种群
Population
酶活性
Enzymatic activity (nmol·min-1·mg-1)
SS 134.83±7.50c
TH 217.79±24.34b
LZ 295.71±12.13a

Fig. 1

Relative expression of MBF2 in different P. xylostella populations The data are shown as mean±SE, different lowercases on the bars indicate significantly different at P<0.05 level by ordinary one-way ANOVA. The same as below"

Fig. 2

Relative expression changes of MBF2 in different P. xylostella populations after chlorantraniliprole induction"

Fig. 3

MBF2 knocking down efficiency (A) and GST genes expression level after knocking down (B) Asterisks indicate a significant difference compared with the dsGFP (**P<0.01, ***P<0.001)"

Fig. 4

GST activity of the 3rd instar larvae of P. xylostella after RNAi"

Fig. 5

Sensitivity of P. xylostella after RNAi to chlorantraniliprole stress"

[1]
LI Z Y, FENG X, LIU S S, YOU M S, FURLONG M J. Biology, ecology, and management of the diamondback moth in China. Annual Review of Entomology, 2016, 61: 277-296.

doi: 10.1146/annurev-ento-010715-023622
[2]
陈鹃, 柏亚罗. 双酰胺类杀虫剂的研发概况及在中国的登记情况. 世界农药, 2021, 43(3): 22-34.
CHEN J, BAI L Y. Overview on R&D of diamide insecticides and their registrations in China. World Pesticide, 2021, 43(3): 22-34. (in Chinese)
[3]
WU A H, LI X W, YAN X Z, FAN W L, HAN C. Electroantennogram responses of Plutella xylostella (L.), to sex pheromone components and host plant volatile semiochemicals. Journal of Applied Entomology, 2020, 144(5): 396-406.

doi: 10.1111/jen.12744
[4]
SPARKS T C, STORER N, PORTER A, SLATER R, NAUEN R. Insecticide resistance management and industry: The origins and evolution of the Insecticide Resistance Action Committee IRAC and the mode of action classification scheme. Pest Management Science, 2021, 77(6): 2609-2619.

doi: 10.1002/ps.6254
[5]
李秀霞, 梁沛, 高希武. 小菜蛾CYP6BG1基因体外真核表达及其对氯虫苯甲酰胺的代谢. 植物保护, 2020, 46(5): 32-37.
LI X X, LIANG P, GAO X W. Eukaryotic expression of Plutella xylostella CYP6BG1 in vitro and its metabolism ability to chlorantraniliprole. Plant Protection, 2020, 46(5): 32-37. (in Chinese)
[6]
李振宇, 肖勇, 吴青君, 谌爱东, 王兴亮, 章金明, 冯夏. 小菜蛾种群灾变及抗药性治理研究进展. 应用昆虫学报, 2020, 57(3): 549-567.
LI Z Y, XIAO Y, WU Q J, SHEN A D, WANG X L, ZHANG J M, FENG X. Progress in research on diamondback moth (Plutella xylostella) outbreaks and the management of resistance in this pest. Chinese Journal of Applied Entomology, 2020, 57(3): 549-567. (in Chinese)
[7]
YIN F, LIN Q S, WANG X X, LI Z Y, FENG X, SHABBIR M Z. The glutathione S-transferase (Pxgst2L) may contribute to the detoxification metabolism of chlorantraniliprole in Plutella xylostella (L.). Ecotoxicology, 2021, 30(6): 1007-1016.

doi: 10.1007/s10646-021-02431-4
[8]
GUO L, WANG Y, ZHOU X G, LI Z Y, LIU S Z, LIANG P, GAO X W. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole. Pest Management Science, 2014, 70(7): 1083-1089.

doi: 10.1002/ps.3651
[9]
TROCZKA B, ZIMMER C T, ELIAS J, SCHORN C, BASS C, DAVIES T G E, FIELD L M, WILLIAMSON M S, SLATER R, NAUEN R. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochemistry and Molecular Biology, 2012, 42(11): 873-880.

doi: 10.1016/j.ibmb.2012.09.001
[10]
HU Z D, FENG X, LIN Q S, CHEN H Y, LI Z Y, YIN F, LIANG P, GAO X W. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. Journal of Integrative Agriculture, 2014, 13(11): 2452-2459.

doi: 10.1016/S2095-3119(14)60748-6
[11]
尹飞, 李振宇, SAMINA S, 林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析. 中国农业科学, 2022, 55(13): 2562-2571.
YIN F, LI Z Y, SAMINA S, LIN Q S. Expression and function analysis of cytochrome P450 genes in Plutella xylostella with different chlorantraniliprole resistance. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571. (in Chinese)
[12]
LIN Q S, JIN F L, HU Z D, CHEN H Y, YIN F, LI Z Y, DONG X L, ZHANG D Y, REN S X, FENG X. Transcriptome analysis of chlorantraniliprole resistance development in the diamondback moth Plutella xylostella. PLoS ONE, 2013, 8(8): e72314.
[13]
MAO T T, LI F C, FANG Y L, WANG H, CHEN J, LI M X, LU Z T, QU J W, LI J X, HU J H, CHENG X Y, NI M, LI B. Effects of chlorantraniliprole exposure on detoxification enzyme activities and detoxification-related gene expression in the fat body of the silkworm, Bombyx mori. Ecotoxicology and Environmental Safety, 2019, 176: 58-63.
[14]
胡珍娣. 小菜蛾对氯虫苯甲酰胺的抗药性及其解毒机理研究[D]. 北京: 中国农业大学, 2016.
HU Z D.Study on resistance and detoxification mechanism of diamondback moth, Plutella xylostella L. to chlorantraniliprole[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[15]
ZHU B, LI L H, WEI R, LIANG P, GAO X W. Regulation of GSTu1-mediated insecticide resistance in Plutella xylostella by miRNA and lncRNA. PLoS Genetics, 2021, 17(10): e1009888.

doi: 10.1371/journal.pgen.1009888
[16]
王茹梦. PxGSTO4介导小菜蛾对茚虫威解毒代谢机制研究[D]. 武汉: 华中农业大学, 2019.
WANG R M.Mechanisms of detoxification and metabolism to indoxacarb mediated by PxGSTO4 in diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae)[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[17]
LIU Q X, UEDA H, HIROSE S. MBF 2 is a tissue- and stage-specific coactivator that is regulated at the step of nuclear transport in the silkworm Bombyx mori. Developmental Biology, 2000, 225(2): 437-446.

doi: 10.1006/dbio.2000.9836
[18]
LIU Q X, UEDA H, HIROSE S. Comparison of sequences of a transcriptional coactivator MBF2 from three Lepidopteran species Bombyx mori, Bombyx mandarina and Samia cynthia. Gene, 1998, 220(1/2): 55-59.

doi: 10.1016/S0378-1119(98)00428-4
[19]
TAKEMARU K I, LI F Q, UEDA H, HIROSE S.Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element- binding protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(14): 7251-7256.
[20]
HERRERO S, ANSEMS M, VAN OERS M M, VLAK J M, BAKKER P L, DE MAAGD R A. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Insect Biochemistry and Molecular Biology, 2007, 37(11): 1109-1118.

doi: 10.1016/j.ibmb.2007.06.007
[21]
JAIMES-MIRANDA F, CHÁVEZ MONTES R A. The plant MBF1 protein family: A bridge between stress and transcription. Journal of Experimental Botany, 2020, 71(6): 1782-1791.

doi: 10.1093/jxb/erz525
[22]
KABE Y, GOTO M, SHIMA D, IMAI T, WADA T, MOROHASHI K, SHIRAKAWA M, HIROSE S, HANDA H. The role of human MBF1 as a transcriptional coactivator. The Journal of Biological Chemistry, 1999, 274(48): 34196-34202.

doi: 10.1074/jbc.274.48.34196
[23]
武华玉, 程碧军, 乔木, 刘贵生, 吴俊静, 李良华, 彭先文, 梅书棋. 猪MBF1基因的多态性及与生产性状的关联分析. 湖北农业科学, 2016, 55(23): 6192-6194, 6287.
WU H Y, CHENG B J, QIAO M, LIU G S, WU J J, LI L H, PENG X W, MEI S Q. Polymorphism of MBF 1 gene and its association with productive traits. Hubei Agricultural Sciences, 2016, 55(23): 6192-6194, 6287. (in Chinese)
[24]
尉瑞敏. 马铃薯StMBF1c基因参与青枯病抗性的研究[D]. 太原: 山西师范大学, 2021.
WEI R M. Roles of potato StMBF1c gene involved in resistance to Ralstonia solanacearum[D]. Taiyuan: Shanxi Normal University, 2021. (in Chinese)
[25]
梁沛, 夏冰, 石泰, 高希武. 阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾谷胱甘肽S-转移酶的影响. 中国农业大学学报, 2003, 8(3): 65-68.
LIANG P, XIA B, SHI T, GAO X W. Effect of sublethal doses of abamectin and β-cypermethrin on glutathione S-transferases in diamondback moth Plutella xylostella (L.). Journal of China Agricultural University, 2003, 8(3): 65-68. (in Chinese)
[26]
YOU Y C, XIE M, REN N N, CHENG X M, LI J Y, MA X L, ZOU M M, VASSEUR L, GURR G M, YOU M S. Characterization and expression profiling of glutathione S-transferases in the diamondback moth, Plutella xylostella (L.). BMC Genomics, 2015, 16: 152.

doi: 10.1186/s12864-015-1343-5
[27]
WANG X L, WU Y D. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. Journal of Economic Entomology, 2012, 105(3): 1019-1023.

doi: 10.1603/EC12059
[28]
FRANCIS F, VANHAELEN N, HAUBRUGE E. Glutathione S- transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Archives in Insect Biochemistry and Physiology, 2005, 58(3): 166-174.

doi: 10.1002/arch.20049
[29]
YANG X, HE C, XIE W, LIU Y T, XIA J X, YANG Z Z, GUO L T, WEN Y N, WANG S L, WU Q J, YANG F S, ZHOU X M, ZHANG Y J. Glutathione S-transferases are involved in thiamethoxam resistance in the field whitefly Bemisia tabaci Q (Hemiptera: Aleyrodidae). Pesticide Biochemistry and Physiology, 2016, 134: 73-78.

doi: 10.1016/j.pestbp.2016.04.003
[30]
LIU S, ZHANG Y X, WANG W L, ZHANG B X, LI S G. Identification and characterisation of seventeen glutathione S-transferase genes from the cabbage white butterfly Pieris rapae. Pesticide Biochemistry and Physiology, 2017, 143: 102-110.

doi: 10.1016/j.pestbp.2017.09.001
[31]
JIA M, CAO G C, LI Y B, TU X B, WANG G J, NONG X Q, WHITMAN D W, ZHANG Z H. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Scientific Reports, 2016, 6: 28424.
[32]
HU B, HUANG H, WEI Q, REN M M, MBURU D K, TIAN X R, SU J Y. Transcription factors CncC/Maf and AhR/ARNT coordinately regulate the expression of multiple GSTs conferring resistance to chlorpyrifos and cypermethrin in Spodoptera exigua. Pest Management Science, 2019, 75(7): 2009-2019.

doi: 10.1002/ps.5316
[33]
MISRA J R, HORNER M A, LAM G, THUMMEL C S. Transcriptional regulation of xenobiotic detoxification in Drosophila. Genes & Development, 2011, 25(17): 1796-1806.

doi: 10.1101/gad.17280911
[34]
CHEN S, LU M, ZHANG N, ZOU X, MO M, ZHENG S. Nuclear factor erythroid-derived 2-related factor 2 activates glutathione S- transferase expression in the midgut of Spodoptera litura (Lepidoptera: Noctuidae) in response to phytochemicals and insecticides. Insect Molecular Biology, 2018, 27(4): 522-532.

doi: 10.1111/imb.12391
[35]
KALSI M, PALLI S R. Transcription factors, CncC and Maf, regulate expression of Cyp6Bq genes responsible for deltamethrin resistance in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2015, 65: 47-56.

doi: 10.1016/j.ibmb.2015.08.002
[36]
KALSI M, PALLI S R.Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). Insect Biochemistry and Molecular Biology, 2017, 83: 1-12.
[37]
KALSI M, PALLI S R. Cap n collar transcription factor regulates multiple genes coding for proteins involved in insecticide detoxification in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2017, 90: 43-52.
[38]
LU K, CHENG Y B, LI Y M, LI W R, ZENG R S, SONG Y Y. Phytochemical flavone confers broad-spectrum tolerance to insecticides in Spodoptera litura by activating ROS/CncC-mediated xenobiotic detoxification pathways. Journal of Agricultural and Food Chemistry, 2021, 69(26): 7429-7445.

doi: 10.1021/acs.jafc.1c02695
[39]
LU Z T, YE W T, FENG P, DAI M L, BIAN D D, REN Y Y, ZHU Q Y, MAO T T, SU W J, LI F C, SUN H N, WEI J, LI B. Low concentration acetamiprid-induced oxidative stress hinders the growth and development of silkworm posterior silk glands. Pesticide Biochemistry and Physiology, 2021, 174: 104824.

doi: 10.1016/j.pestbp.2021.104824 pmid: 33838717
[40]
WANG H, LU Z T, LI M X, FANG Y L, QU J W, MAO T T, CHEN J, LI F C, SUN H N, LI B. Responses of detoxification enzymes in the midgut of Bombyx mori after exposure to low-dose of acetamiprid. Chemosphere, 2020, 251: 126438.

doi: 10.1016/j.chemosphere.2020.126438
[41]
胡波. 甜菜夜蛾细胞色素P450和谷胱甘肽-S-转移酶基因的转录调控机制[D]. 南京: 南京农业大学, 2019.
HU B. The transcription regulation mechanism of cytochrome P450 and glutathione-S-transferase genes in Spodoptera exigua[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[42]
周春燕.MBF2家族鉴定及其成员MBF2- 1 参与丝素重链转录调控的研究[D]. 重庆: 西南大学, 2016.
ZHOU C Y. Identification of MBF2 family and its member MBF2-1 involved in the regulation of the transcription of silk fibroin heavy chain[D]. Chongqing: Southwest University, 2016. (in Chinese)
[43]
LI F Q, TAKEMARU K, GOTO M, UEDA H, HANDA H, HIROSE S. Transcriptional activation through interaction of MBF2 with TFIIA. Genes to Cells, 1997, 2(2): 143-153.

pmid: 9167971
[1] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[2] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[3] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[4] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[5] MENG XiangKun,WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun. Cloning and Analysis of P-glycoprotein Gene and Its Transcriptional Response to Insecticide in Chilo suppressalis [J]. Scientia Agricultura Sinica, 2021, 54(19): 4121-4131.
[6] LI FeiFei,WANG BeiBei,LAI YingFang,YANG FeiYing,YOU MinSheng,HE WeiYi. Knockout of Single Allele of fl(2)d Significantly Decreases the Fecundity and Fertility inPlutella xylostella [J]. Scientia Agricultura Sinica, 2021, 54(14): 3029-3042.
[7] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[8] SUN LiNa, TIAN ZhiQiang, ZHANG HuaiJiang, LI YanYan, YAN WenTao, YUE Qiang, QIU GuiSheng. Transcriptome Analysis of Disruption of Mating in the Peach Fruit Moth (Carposina sasakii) by Chlorantraniliprole [J]. Scientia Agricultura Sinica, 2018, 51(15): 2925-2936.
[9] CHEN YiQu, XIANG Xin, GONG ChangWei, WANG XueGui. Effects of Sublethal Doses of Chlorantraniliprole on the Detoxification Enzymes Activities and the Growth and Reproduction of Spodoptera exigua [J]. Scientia Agricultura Sinica, 2017, 50(8): 1440-1451.
[10] ZHOU Rong-yan, WEI Yan-hui, XI Jian-zhong, LI Lan-hui, CHEN Hui, GAO Li-jie, ZHANG Zhen-hong. Transcriptional Activity of Goat PRNP Gene Promoter [J]. Scientia Agricultura Sinica, 2016, 49(10): 1990-1997.
[11] WANG Ya-xian, YANG Fan, WANG Hua-yan. Expression and Regulation of Sall4 and Screening Core Regulation Region of Sall4 Promoter [J]. Scientia Agricultura Sinica, 2016, 49(1): 176-185.
[12] LIU Hui, LI De-jun, DENG Zhi. Advances in Research of Transcriptional Regulatory Network in Response to Cold Stress in Plants [J]. Scientia Agricultura Sinica, 2014, 47(18): 3523-3533.
[13] WANG Na, LANG Zhi-Fei, HE Kang, LI Fei. Resistance of Field Population Aphis gossypii Glover to Carbosulfan and Imidacloprid in Xingtai and Nanjing District [J]. Scientia Agricultura Sinica, 2013, 46(16): 3377-3383.
[14] XU De-Jin, GU Zhong-Yan, XU Guang-Chun, XU Xiao-Long, DONG Yu-Xuan. Effects of Droplet Density and Droplet Size on Control Efficiency of Chlorantraniliprole Against Cnaphalocrocis medinalis (Guenée) [J]. Scientia Agricultura Sinica, 2012, 45(4): 666-674.
[15] CHEN Xiao-Jun, WANG Meng, FAN Shu-Qin, CUI Hai-Rong, YANG Yi-Zhong. Degradation Dynamics and Residues Analysis of Chlorantraniliprole in Cabbage and Soil by QuEChERS-High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2012, 45(13): 2636-2647.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!