Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 802-818.doi: 10.3864/j.issn.0578-1752.2025.04.014

• RESEARCH NOTES • Previous Articles     Next Articles

Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells

GUO AoLin1,2(), LIN JunXuan1,2(), LAI GongTi2, HE LiYuan2, CHE JianMei3, PAN Ruo2, YANG FangXue1,2, HUANG YuJi1, CHEN GuiXin1(), LAI ChengChun2()   

  1. 1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002
    2 Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences/Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003
    3 Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003
  • Received:2024-09-30 Accepted:2024-11-20 Online:2025-02-16 Published:2025-02-24
  • Contact: CHEN GuiXin, LAI ChengChun

Abstract:

【Objective】This study aims to clone the key gene VdF3′5′H2 involved in anthocyanin biosynthesis and analyze its regulatory role of anthocyanin biosynthesis and component content in spine grape (Vitis davidii Foëx) cells, thereby providing technical support and a theoretical foundation for constructing spine grape cells with high-yield anthocyanin production and enabling targeted regulation of anthocyanin biosynthesis.【Method】Using spine grape cells as materials, the VdF3′5′H2 was cloned and a plant expression vector was constructed. This vector was subsequently transformed into spine grape cell, with positive cell lines were screened in antibiotic media and identified through fluorescence observation and PCR analysis. The phenotypic characteristics of the transgenic spine grape cells were analyzed, along with quantification of anthocyanin, flavonoid, and proanthocyanidin. Additionally, the metabolite profile of anthocyanins was detected by UPLC-MS/MS. The expression levels of genes associated with anthocyanin biosynthesis were assessed using real-time quantitative PCR (RT-qPCR), and a comprehensive analysis of gene expression and differential metabolites was carried out by the O2PLS method.【Result】The open reading frame (ORF) of VdF3′5′H2 gene is 1 527 bp, encoding a protein comprising 508 amino acid residues. The VdF3′5′H2 protein exhibits high homology with its counterparts in related plants within the same family, containing the CYP75 conserved domain, a heme-binding site, and three characteristic conserved motifs. Phylogenetic analysis revealed that F3′H and F3′5′H cluster within the same branch, implying an evolutionary relationship from F3′H to F3′5′H, with VdF3′5′H2 positioned at a more ancestral state compared to VdF3′5′H1. Furthermore, subcellular localization indicated that the VdF3′5′H2 protein resides in the cytoplasm. The contents of anthocyanins, flavonoids and proanthocyanidins in two transgenic spine grape cells overexpression VdF3′5′H2 showed a significant increase compared to the wild type control. The content ratio of delphinidin-anthocyanins in the two transgenic cells increased to 7.82% (T6) and 14.32% (T10), respectively, Petunidin-anthocyanins increaseed to 7.30% and 10.16%, respectively, while the content ratio of malvidin- anthocyanins increased to 58.08% and 42.30%, respectively. In contrast, the content ratios of the three types of anthocyanins in the wild-type cells were 1.92%, 1.48%, and 8.49%, respectively. Additionally, the content ratios of cyanidin- and paeonidin-anthocyanins in the two transgenic cells decreased significantly. Overexpression of VdF3′5′H2 led to the downregulation of PAL, CHS, CHI and F3H expression levels, while upregulating the expression levels of VdF3′5′H1, LDOX and UFGT genes. The comprehensive analysis integrating gene expression data with differential metabolites showed that the overexpression of VdF3′5′H2 modulated the transcriptional regulation of genes involved in anthocyanin biosynthesis, thereby influencing both the synthesis pathways and accumulation patterns of various types of anthocyanins.【Conclusion】The overexpression of VdF3′5′H2 gene significantly enhanced the biosynthesis and accumulation of anthocyanins in spine grape cells, by regulating gene expression and altering the metabolic flux of the anthocyanin biosynthesis pathway, there by modulating the composition and content ratio of antocyanins in spine grape cells.

Key words: spine grape, cell culture, flavonoids 3′5′-hydroxylase (F3′5′H), anthocyanins, overexpression

Table 1

Medium for spine grape cell culture and genetic transformation"

培养基种类 Type of medium 配方 Formulation
继代培养基Subculture medium MS+1.0 mg·L-1 2,4-D+6.0 g·L-1琼脂+30.0 g·L-1蔗糖(pH 5.8)
MS+1.0 mg·L-1 2,4-D+6.0 g·L-1 Agar+30.0 g·L-1 Sucrose (pH 5.8)
MS重悬液MS resuspension solution MS+20 µmol·L-1 AS (pH 5.8)
NAA重悬液NAA resuspension solution 10 mmol·L-1 MgCl2+100 mmol·L-1 MES (pH 5.7)+100 µmol·L-1 AS
液体LB培养基Liquid LB medium 10 g·L-1 胰蛋白胨+10 g·L-1 NaCl+5 g·L-1酵母浸粉(pH 7.0)
10 g·L-1 Tryptone+10 g·L-1 NaCl+5 g·L-1 Yeast infusion powder (pH 7.0)
共培培养基Co-culture medium MS+100 µmol·L-1 AS+7.0 g·L-1琼脂+30.0 g·L-1蔗糖(pH 5.8)
MS+100 µmol·L-1 AS+7.0 g·L-1 Agar+30.0 g·L-1 Sucrose (pH 5.8)
抗性筛选培养基Resistance screening medium MS+1.0 mg·L-1 2,4-D+50 mg·L-1 Kan+100 mg·L-1 Tim+7.0 g·L-1琼脂+30.0 g·L-1蔗糖(pH 5.8)
MS+1.0 mg·L-1 2,4-D+50 mg·L-1 Kan+100 mg·L-1 Tim+7.0 g·L-1 Agar+30.0 g·L-1 Sucrose (pH 5.8)

Fig. 1

Multiple sequence alignment and phylogenetic tree of F3′5′H proteins A: Multiple sequence alignment. The same residues in different sequences are denoted by a dark blue shading, while varying colors represent distinct levels of similarity. Ⅰ represents P450 motif “PPGP”, Ⅱ represents Ⅰ helical motif “AGTDT”, and Ⅲ represents heme-binding domain “FGAGRRICAG”. The black triangle represents the heme-binding site. B: Phylogenetic tree"

Fig. 2

Construction of plant expression vector, identification of transformed cell lines, and determination of subcellular localization A: Schematic diagram of the expression vector; B: GFP fluorescence assay of non-transgenic and transgenic spine grape cells; C: PCR amplification of VdF3′5′H2 from non-transgenic and transgenic spine grape cells; D: Subcellular localization of VdF3'5'H2. 35S::GFP and 35S:: VdF3'5'H2-GFP represents empty vector and recombinant vector, respectively. Bar =50 μm"

Fig. 3

Phenotypes of different spine grape cells and contents of anthocyanins, flavonoids and proanthocyanidins A: Non-transgenic (WT) and transgenic cells of spine grape (cultured for 0 and 35 days); B: Contents of anthocyanins, flavonoids and proanthocyanidins. Different lowercase letters indicate statistically significant differences (P<0.05). The same as below"

Fig. 4

Differential analysis of anthocyanin metabolites between non-transgenic and transgenic spine grape cells (WT vs T6 vs T10) A: Clustering heat map of metabolites; B: Content ratio of different anthocyanin components"

Fig. 5

Expression levels of key genes involved in anthocyanin biosynthesis between non-transgenic and transgenic spine grape cells"

Fig. 6

Comprehensive analysis of key gene expressions and differential anthocyanin metabolites A: Summary pathway diagram of changes in anthocyanin metabolit levels between non-transgenic and transgenic spine grape cells (The differences are expressed by the Log2 fold change value); B: Gene expression heatmap (The differences are expressed by the Log2 value); C: Load map associated with differential metabolites and gene expressions (WT vs T6); D: Load map of associated with differential metabolites and gene expressions (WT vs T10). Cy: Cyanidin; Dp: Delphinidin; Pn: Peonidin; Mv: Malvidin; Pt: Petunidin; Pg: Pelargonidin; digluc: Diglucoside; rhamn: Rhamnoside; gluc: Glucoside; sophor: Sophoroside; glucur: Glucuride; dima: Dimalonyl; coum: Coumaryl; galact: Galactoside; arabin: Arabinosidase; malon: Malonyl; arabin: Arabinoside; xyl: Xyloside; sambubi: Sambubioside; rutin: Rutinoside; acet: Acetyl; Trisuc: Trisuccinyl"

[1]
YUE W X, HAN F L. Effects of monoglucoside and diglucoside anthocyanins from Yan 73 (Vitis vinifera L.) and spine grape (Vitis davidii Foex) skin on intestinal microbiota in vitro. Food Chemistry: X, 2022, 16: 100501.
[2]
JU Y L, YUE X F, CAO X Y, FANG Y L. Targeted metabolomic and transcript level analysis reveals quality characteristic of Chinese wild grapes (Vitis davidii foex). Foods, 2020, 9(10): 1387.
[3]
APPELHAGEN I, WULFF-VESTER A K, WENDELL M, HVOSLEF- EIDE A-K, RUSSELL J, OERTEL A, MARTENS S, MOCK H P, MARTIN C, MATROS A. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metabolic Engineering, 2018, 48: 218-232.

doi: S1096-7176(18)30094-6 pmid: 29890220
[4]
赖恭梯, 阙秋霞, 潘若, 刘雨轩, 王琦, 赖谱富, 高慧颖, 赖呈纯. 刺葡萄查尔酮合成酶基因CHS对不同光质的响应及转录因子调控分析. 生物技术通报, 2022, 38(11): 129-139.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-0077
LAI G T, QUE Q X, PAN R, LIU Y X, WANG Q, LAI P F, GAO H Y, LAI C C. Response of Chalcone synthase gene (CHS) to different light quality and transcription regulation in Vitis davidii. Biotechnology Bulletin, 2022, 38(11): 129-139. (in Chinese)
[5]
LIANG Z C, WU B H, FAN P G, YANG C X, DUAN W, ZHENG X B, LIU C Y, LI S H. Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chemistry, 2008, 111(4): 837-844.
[6]
MUÑOZ C, GOMEZ-TALQUENCA S, CHIALVA C, IBÁÑEZ J, MARTINEZ-ZAPATER J M, PEÑA-NEIRA Á, LIJAVETZKY D. Relationships among gene expression and anthocyanin composition of Malbec grapevine clones. Journal of Agricultural and Food Chemistry, 2014, 62(28): 6716-6725.

doi: 10.1021/jf501575m pmid: 24983916
[7]
HE F, MU L, YAN G L, LIANG N N, PAN Q H, WANG J, REEVES M J, DUAN C Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 2010, 15(12): 9057-9091.

doi: 10.3390/molecules15129057 pmid: 21150825
[8]
LI X G, YANG T T, YU Z Y, HUO J W, DONG Q, DUAN Y D, YANG G. Cloning of flavonoid 3',5'-hydroxylase and 3'-hydroxylase homologs from black currant (Ribes nigrum) and their differential expression at various fruit maturation stages. Journal of Forestry Research, 2019, 30(2): 463-470.
[9]
SHI T C, SU Y, LAN Y B, DUAN C Q, YU K J. The molecular basis of flavonoid biosynthesis response to water, light, and temperature in grape berries. Frontiers in Plant Science, 2024, 15: 1441893.
[10]
HOLTON T A, BRUGLIERA F, LESTER D R, TANAKA Y, HYLAND C D, MENTING J G T, LU C Y, FARCY E, STEVENSON T W, CORNISH E C. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature, 1993, 366(6452): 276-279.
[11]
JIN J Q, LIU Y F, MA C L, MA J Q, HAO W J, XU Y X, YAO M Z, CHEN L. A novel F3'5'H allele with 14 bp deletion is associated with high catechin index trait of wild tea plants and has potential use in enhancing tea quality. Journal of Agricultural and Food Chemistry, 2018, 66(40): 10470-10478.
[12]
DONG A X, ZHANG H L, XIN H B, ZHAO Z N, HONG B, CUI R F, LIANG F, QIN H L, CONG R C. Cloning of F35H and the correlation between this gene and delphinidin biosynthesis in Salvia splendens. Acta Horticulturae, 2018(1208): 77-84.
[13]
马璐琳, 王祥宁, 贾文杰, 段青, 崔光芬, 杜文文, 王继华. 黄草乌Av-F3'5'H基因的克隆与表达分析. 西南农业学报, 2015, 28(6): 2438-2443.
MA L L, WANG X N, JIA W J, DUAN Q, CUI G F, DU W W, WANG J H. Cloning and expression pattern analysis of Av-F3'5'H gene from Aconitum vilmorinianum. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2438-2443. (in Chinese)
[14]
CASTELLARIN S D, GASPERO G D, MARCONI R, NONIS A, PETERLUNGER E, PAILLARD S, ADAM-BLONDON A-F, TESTOLIN R. Colour variation in red grapevines (Vitis vinifera L.): Genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics, 2006, 7: 12.
[15]
SEITZ C, AMERES S, SCHLANGEN K, FORKMANN G, HALBWIRTH H. Multiple evolution of flavonoid 3',5'-hydroxylase. Planta, 2015, 242(3): 561-573.

doi: 10.1007/s00425-015-2293-5 pmid: 25916309
[16]
JEONG S T, GOTO-YAMAMOTO N, HASHIZUME K, ESAKA M. Expression of the flavonoid 3′-hydroxylase and flavonoid 3′, 5′- hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Science, 2006, 170(1): 61-69.
[17]
KOBAYASHI H, SUZUKI S, TANZAWA F, TAKAYANAGI T. Low expression of flavonoid 3,5-hydroxylase (F3′, 5′H) associated with cyanidin-based anthocyanins in grape leaf. American Journal of Enology and Viticulture, 2009, 60(3): 362-367.
[18]
NGUYEN Y T H, HOANG H T T, MAI A T H, NGUYEN L T N, NGUYEN Q H, PHAM N T T, SY T D, CHU M H. The Aconitum carmichaelii F3′5′H gene overexpression increases flavonoid accumulation in transgenic tobacco plants. Horticulturae, 2021, 7(10): 384.
[19]
邢梦云. 杨梅FLSsF3′5′H调控杨梅素生物合成的机制研究[D]. 杭州: 浙江大学, 2021.
XING M Y. Study on the mechanism of Myrica rubra FLSs and F3'5'H regulating Myricetin biosynthesis[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[20]
MA L L, JIA W J, DUAN Q, DU W W, LI X, CUI G F, WANG X N, WANG J H. Heterologous expression of Platycodon grandiflorus PgF3'5'H modifies flower color pigmentation in tobacco. Genes, 2023, 14(10): 1920.
[21]
LI S C, SUN L, FAN X C, ZHANG Y, JIANG J F, LIU C H. Polymorphism of anthocyanin concentration and composition in Chinese wild grapes. Australian Journal of Grape and Wine Research, 2021, 27(1): 34-41.
[22]
LIANG N N, PAN Q H, HE F, WANG J, REEVES M J, DUAN C Q. Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China. Journal of Agricultural and Food Chemistry, 2013, 61(25): 6016-6027.
[23]
LAI C C, PAN H, ZHANG J, WANG Q, QUE Q X, PAN R, LAI Z X, LAI G T. Light quality modulates growth, triggers differential accumulation of phenolic compounds, and changes the total antioxidant capacity in the red callus of Vitis davidii. Journal of Agricultural and Food Chemistry, 2022, 70(41): 13264-13278.
[24]
赖呈纯, 范丽华, 黄贤贵, 谢鸿根. 刺葡萄幼胚愈伤组织诱导及其高产原花青素细胞系筛选. 植物生理学报, 2014, 50(11): 1683-1691.
LAI C C, FAN L H, HUANG X G, XIE H G. Callus induction in brier grape(Vitis davidii foёx) from immature embryos and screening of cell lines with high-production of oligomeric proanthocyanidins. Plant Physiology Journal, 2014, 50(11): 1683-1691. (in Chinese)
[25]
潘红, 赖呈纯, 黄贤贵, 范丽华, 段长青, 李绍振, 赖钟雄. 不同处理对刺葡萄愈伤组织花青素和原花青素生物合成的影响. 热带作物学报, 2018, 39(12): 2404-2409.
PAN H, LAI C C, HUANG X G, FAN L H, DUAN C Q, LI S Z, LAI Z X. Effects of different treatments on anthocyanins and procyanidins biosynthesis in spine grape callus. Chinese Journal of Tropical Crops, 2018, 39(12): 2404-2409. (in Chinese)
[26]
潘红, 赖呈纯, 张静, 黄贤贵, 林玉玲, 赖钟雄. 不同光质条件下刺葡萄红色愈伤组织的RT-qPCR内参基因筛选. 应用与环境生物学报, 2019, 25(6): 1407-1413.
PAN H, LAI C C, ZHANG J, HUANG X G, LIN Y L, LAI Z X. Selection of reference genes for RT-qPCR from the red callus of Vitis davidii (Rom. Caill.) Foëx under different light qualities. Chinese Journal of Applied and Environmental Biology, 2019, 25(6): 1407-1413. (in Chinese)
[27]
WU Y Q, HAN T Y, LYU L F, LI W L, WU W L. Research progress in understanding the biosynthesis and regulation of plant anthocyanins. Scientia Horticulturae, 2023, 321: 112374.
[28]
LI M, CAO Y T, DEBNATH B, YANG H J, KUI X H, QIU D L. Cloning and expression analysis of flavonoid 3',5'-hydroxylase gene from Brunfelsia acuminata. Genes, 2021, 12(7): 1086.
[29]
方颖, 黄启群, 金雪花. 华丽龙胆GsF3′5′HGsFNS基因的克隆及表达分析. 西北植物学报, 2020, 40(12): 2023-2030.
FANG Y, HUANG Q Q, JIN X H. Cloning and expression analysis of GsF3′5′H and GsFNS genes from gentiana sino-ornata. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(12): 2023-2030. (in Chinese)
[30]
TYAGI S, RATHINAM M, DOKKA N, CHAUDHARY N, SATISH L, DASH P K, SHASANY A K, SREEVATHSA R. Cajanus platycarpus flavonoid 3′5′Hydroxylase_2 (CpF3′5′H_2) confers resistance to Helicoverpa armigera by modulating total polyphenols and flavonoids in transgenic tobacco. International Journal of Molecular Sciences, 2023, 24(2): 1755.
[31]
GUO X L, HU J B, YANG S M, WANG D L, WANG J B. Genome-wide analysis of the F3′5′H gene family in blueberry (Vaccinium corymbosum L.) provides insights into the regulation of anthocyanin biosynthesis. Phyton, 2023, 92(9): 2683-2697.
[32]
WU Y Q, WANG T L, XIN Y, WANG G B, XU L. Overexpression of GbF3′5′H1 provides a potential to improve the content of epicatechin and gallocatechin. Molecules, 2020, 25(20): 4836.
[33]
SEITZ C, EDER C, DEIML B, KELLNER S, MARTENS S, FORKMANN G. Cloning, functional identification and sequence analysis of flavonoid 3'-hydroxylase and flavonoid 3,5-hydroxylase cDNAs reveals independent evolution of flavonoid 3′,5′-hydroxylase in the Asteraceae family. Plant Molecular Biology, 2006, 61(3): 365-381.
[34]
MU L, HE J J, PAN Q H, HE F, DUAN C Q. Tissue-specific accumulation of flavonoids in grape berries is related to transcriptional expression of VvF3′H and VvF3′5′H. South African Journal of Enology and Viticulture, 2014, 35(1): 68-81.
[35]
MANCO A, GERARDI C, ROMANO G, D’AMICO L, BLANCO A, MILANO F, DI SANSEBASTIANO G P, BALECH R, LADDOMADA B. Phenolic profile of whole seeds and seed fractions of lentils and its impact on antioxidant activity. Food Bioscience, 2023, 54: 102887.
[36]
HUANG H, HU K, HAN K T, XIANG Q Y, DAI S L. Flower colour modification of Chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3′5′H gene. PLoS ONE, 2013, 8(11): e74395.
[37]
NGUYEN T N L, HOANG T T H, NGUYEN H Q, TU Q T, TRAN T H, LO T M T, VU T T T, CHU H M. Agrobacterium tumefaciens- mediated genetic transformation and overexpression of the flavonoid 3′5′-hydroxylase gene increases the flavonoid content of the transgenic Aconitum carmichaelii Debx. plant. In Vitro Cellular & Developmental Biology - Plant, 2022, 58(1): 93-102.
[38]
XU J P, SHIN J Y, PARK P M, AN H R, KIM Y J, KIM S J, LEE S Y. Flower color modification through co-overexpression of the VtF3′5′H and RhNHX genes in Rosa hybrida. Plant Cell, Tissue and Organ Culture (PCTOC), 2023, 153(2): 403-416.
[39]
袁晓丽, 江莉, 黄莉莉, 胡斌. 花青素-3-葡萄糖苷干预过氧化氢诱导的H9c2细胞损伤的作用机制. 中西医结合心脑血管病杂志, 2023, 21(17): 3146-3153.
YUAN X L, JIANG L, HUANG L L, HU B. Protective effect of anthocyanin-3-glucoside in H9c2 cells injury induced by hydrogen peroxide. Chinese Journal of Integrative Medicine on Cardio- Cerebrovascular Disease, 2023, 21(17): 3146-3153. (in Chinese)
[40]
NAING A H, KIM C K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 2021, 172(3): 1711-1723.
[41]
LIU S X, LOU Y, LI Y X, ZHAO Y, FENG X J, CAPOZZI V, LAAKSONEN O, YANG B R, LI P, GU Q. Comparison of anthocyanin and volatile organic compounds in juices and fruit wines made from blood oranges (Citrus sinensis L. Osbeck) at different maturity stages. Food Bioscience, 2023, 56: 103194.
[42]
SZYMANOWSKA U, BARANIAK B. Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries. Antioxidants, 2019, 8(8): 299.
[43]
WANG R, LENKA S K, KUMAR V, GASHU K, SIKRON-PERSI N, DYNKIN I, WEISS D, PERL A, FAIT A, OREN-SHAMIR M. Metabolic engineering strategy enables a hundred-fold increase in viniferin levels in Vitis vinifera cv. Gamay red cell culture. Journal of Agricultural and Food Chemistry, 2021, 69(10): 3124-3133.
[44]
SHIMADA Y, NAKANO-SHIMADA R, OHBAYASHI M, OKINAKA Y, KIYOKAWA S, KIKUCHI Y. Expression of chimeric P450 genes encoding flavonoid-3',5'-hydroxylase in transgenic tobacco and petunia plants. FEBS Letters, 1999, 461(3): 241-245.
[45]
孔德静, 梁进丽, 宫秋玲, 俞沙沙, 梁琳, 孙威, 鞠志刚. 一个类黄酮3′-羟化酶参与多星韭花色素生物合成的功能解析. 安徽农业大学学报, 2024, 51(4): 581-587.
KONG D J, LIANG J L, GONG Q L, YU S S, LIANG L, SUN W, JU Z G. Function analysis of a flavonoid 3'-hydroxylase gene involved in anthocyanidin biosynthesis of Allium wallichii. Journal of Anhui Agricultural University, 2024, 51(4): 581-587. (in Chinese)
[46]
YUAN Y W, TIAN Y L, GAO S, ZHANG X M, GAO X F, HE J P. Effects of environmental factors and fermentation on red raspberry anthocyanins stability. LWT, 2023, 173: 114252.
[47]
MERECZ-SADOWSKA A, SITAREK P, KOWALCZYK T, ZAJDEL K, JĘCEK M, NOWAK P, ZAJDEL R. Food anthocyanins: Malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits. Nutrients, 2023, 15(13): 3016.
[48]
ENARU B, DRETCANU G, POP T D, STǍNILǍ A, DIACONEASA Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants, 2021, 10(12): 1967.
[49]
KHOO H E, AZLAN A, TANG S T, LIM S M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 2017, 61(1): 1361779.
[50]
HOLTON T A, CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 1995, 7(7): 1071-1083.

doi: 10.1105/tpc.7.7.1071 pmid: 12242398
[51]
LEE Y A, CHEON K S, SHIN J Y, KIM J H, SONG B N, KIM S J, PARK P M, AN H R, KIM Y J, LEE J, LEE S Y. Flower color modification through expression of Aquilegia buergeriana F3′5′H in Petunia hybrida. Horticulture, Environment, and Biotechnology, 2023, 64(4): 683-694.
[52]
孙磊, 樊秀彩, 张颖, 姜建福, 孙海生, 刘崇怀. 部分中国野生葡萄果皮花色苷组分分析. 果树学报, 2015, 32(6): 1143-1151.
SUN L, FAN X C, ZHANG Y, JIANG J F, SUN H S, LIU C H. Analysis of anthocyanin composition in berry skin of Chinese wild grape. Journal of Fruit Science, 2015, 32(6): 1143-1151. (in Chinese)
[53]
AGEORGES A, FERNANDEZ L, VIALET S, MERDINOGLU D, TERRIER N, ROMIEU C. Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Science, 2006, 170(2): 372-383.
[54]
张柯楠, 尹海宁, 王家逵, 曹建宏, 惠竹梅. 云南香格里拉不同海拔葡萄果皮酚类物质差异及成因分析. 中国农业科学, 2023, 56(19): 3879-3893.

doi: 10.3864/j.issn.0578-1752.2023.19.014
ZHANG K N, YIN H N, WANG J K, CAO J H, HUI Z M. Differences and genesis of grape phenolic compounds among different altitudes in Yunnan Shangri-la. Scientia Agricultura Sinica, 2023, 56(19): 3879-3893. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2023.19.014
[55]
LI Y, GROTEWOLD E, DUDAREVA N. Enough is enough: Feedback control of specialized metabolism. Trends in Plant Science, 2024, 29(5): 514-523.
[1] YIN YuQin, XU HuanHuan, TANG LiPing, WANG XinYa, HU ChunMei, HOU XiLin, LI Ying. Genome-Wide Identification of GST Gene Family and Functional Analysis of the BcGSTF6 Gene Related to Anthocyanin in Pak Choi [J]. Scientia Agricultura Sinica, 2024, 57(16): 3234-3249.
[2] LIU Tong, WANG ZhiRong, LI Wei, LIU Yang, WANG XiangRu, LAI DiLi, HE YuQi, ZHANG KaiXuan, ZHAO ZhenJun, ZHOU MeiLiang. Function Analysis of bHLH93 Transcription Factor in Tartary Buckwheat in Response to Aluminum Stress [J]. Scientia Agricultura Sinica, 2024, 57(16): 3127-3141.
[3] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[4] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[5] ZHANG LiYa, LI Qi, SHI ShanShan, MA YuMeng, LIU YaQi, ZHAO ChaoWei, WANG HeRu, CAO HaiQun, LIAO Min, ZHAO Ning. Resistance Mechanism of Barnyard Grass (Echinochloa crus-galli) to Penoxsulam and Screening Herbicides for Its Control in Rice Fields [J]. Scientia Agricultura Sinica, 2023, 56(14): 2713-2723.
[6] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[7] RAN HongBiao,ZHAO LiLing,WANG Hui,CHAI ZhiXin,WANG JiKun,WANG JiaBo,WU ZhiJuan,ZHONG JinCheng. Effects of lncFAM200B on the Lipid Deposition in Intramuscular Preadipocytes of Yak [J]. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666.
[8] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[9] MingYue GONG,XiaoTian DUAN,TingTing YU,Jie WANG,LiLi SHEN,Ying LI,MingHong LIU,YongLiang LI,HongKun LÜ,SongBai ZHANG,JinGuang YANG. Cloning of Hsc70-2 and Its Promoting Effect on Potato virus Y Infection in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2020, 53(4): 771-781.
[10] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[11] ZHU ZiJian,CHEN SiYu,SU Jun,TAO YongSheng. Correlation Analysis Between Amino Acids and Fruity Esters During Spine Grape Fermentation [J]. Scientia Agricultura Sinica, 2020, 53(11): 2272-2284.
[12] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[13] ZHANG Kui, PAN GuangZhao, SU JingJing, TAN Juan, XU Man, LI YuTian, CUI HongJuan. Identification, Expression, Subcelluar Localization, and Function of glial cell missing (gcm) in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1401-1411.
[14] YAN YiChao, WAN ChunYan, GU XianBin, GUO ChengBao, CHEN YueHong, GAO ZhiHong. Effect of RdreB1BI Gene Overexpression on Fruit Quality and Related Gene Expression in Strawberry [J]. Scientia Agricultura Sinica, 2018, 51(7): 1353-1367.
[15] LI FeiHong,HOU YingJun,LI XueHan,YU XinYi,QU ShenChun. Cloning and Function Analysis of Apple Gibberellin Oxidase Gene MdGA2ox8 [J]. Scientia Agricultura Sinica, 2018, 51(22): 4339-4351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!