Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4789-4800.doi: 10.3864/j.issn.0578-1752.2023.23.018

• RESEARCH NOTES • Previous Articles    

Changes of Endogenous Hormones and Polyamines During Ovule Development of Stenospermocarpic Seedless Grape

ZHU PeiPei(), QIN HaoXiang, ZHANG JianXia()   

  1. College of Horticulture, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas/Key Laboratory of Horticultural Plant Germplasm Resource Utilization in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2023-04-18 Accepted:2023-08-15 Online:2023-12-04 Published:2023-12-04
  • Contact: ZHANG JianXia

Abstract:

【Objective】By exploring the effects of endogenous hormones and polyamines on embryo development during the ovule development of seedless grape, this study provided a theoretical basis for promoting embryo development by spraying exogenous hormones before anthesis and adding exogenous hormones into the medium in vitro culture of ovule.【Method】In this study, the European grape (Vitis vinifera L.) variety Jingxiu and its F1 generation stenospermocarpic seedless variety Qinxiu were used as test materials. The content of endogenous hormones and polyamines in ovule of fruit at different developmental stages were compared by high performance liquid chromatography mass spectrometry (HPLCMS) and ultra performance liquid chromatography (UPLC).【Result】The content of IAA, ZT, ZR, and iPAS reached their highest values at 39 DAF (days after flowering) for Jingxiu and 42 DAF for Qinxiu, and the highest values of the former were higher than those of the latter (more than 1.5 times). For the content of JA and SA, Jingxiu started to rise sharply at 36 DAF (2 000 ng∙g-1 and 6 500 ng∙g-1, respectively), and reached the highest values at 39 DAF (6 500 ng∙g-1 and 10 000 ng∙g-1, respectively), and then, which were declining and remaining at a high level at 42-45 DAF, while Qinxiu was declining and remaining at a low level from 36 DAF (3 500 ng∙g-1 and 3 000 ng∙g-1, respectively). The ACC content of Jingxiu was almost 0 ng∙g-1 at 39 DAF, then increased rapidly and reached its highest value (1 200 ng∙g-1) at 45 DAF, while Qinxiu reached its highest value (900 ng∙g-1) at 39 DAF, then declined to 0 ng∙g-1 at 42 DAF, and remained at a very low level. The ABA content of Jingxiu was almost 0 ng∙g-1 from 36 to 45 DAF, while that of Qinxiu rose sharply from 0 ng∙g-1 at 39 DAF to the highest value (900 ng∙g-1) at 42 DAF. The trends of Put (putrescine), Spm (spermine), and Spd (spermidine) were similar for the two varieties, but Jingxiu was consistently higher than Qinxiu. The highest values of Put and Spd were 42 DAF for Jingxiu and 39 DAF for Qinxiu, except for the highest values of Spm, which were all found at 42 DAF. 【Conclusion】 The lower content of growth promoting substances (IAA, CTK, GA3, ACC, JA, SA, Put, Spd, and Spm) and the higher content of growth inhibiting substances (ABA), and lower ratios of (IAA+GA3)/ABA, (IAA+ZT+GA3)/ABA, Spm/PAs, (Spd+Spm)/PAs, and (Spd+Spm)/Put in the ovules of the seedless variety Qinxiu compared with the seeded variety Jingxiu might be one of the main reasons for seedless grape embryo abortion. Therefore, in the process of seedless grape embryo rescue, the embryo abortion could be inhibited by spraying before flowering or adding to media a certain concentration of growth promoting substances.

Key words: stenospermocarpic seedless grapes, ovules, embryo, endogenous hormones, polyamines

Fig. 1

Weight, number of ovules per fruit, and weight of single ovule of Jingxiu and Qinxiu grape"

Fig. 2

Changes in fruit and ovule size and weight at different developmental stages of Jingxiu and Qinxiu grape Different lowercase letters indicate significant difference (P<0.05 level). The same as below"

Fig. 3

Changes of hormone content in ovules at different developmental stages of Jingxiu and Qinxiu grape"

Fig. 4

Changes of ovule hormone proportion at different developmental stages of Jingxiu and Qinxiu grape"

Fig. 5

Changes of polyamine content in ovules at different developmental stages of Jingxiu and Qinxiu grape"

Fig. 6

Changes in the proportion of polyamines in ovules at different developmental stages of Jingxiu and Qinxiu grape"

[1]
COOMBE B G. Relationship of growth and development to changes in sugars, auxins, and gibberellins in fruit of seeded and seedless varieties of Vitis vinifera. Plant Physiology, 1960, 35(2): 241-250.

doi: 10.1104/pp.35.2.241
[2]
刘巧, 张立华, 王跃进, 张剑侠. 两个无核葡萄品种胚及胚乳败育的细胞学研究. 北方园艺, 2016(3): 31-35.
LIU Q, ZHANG L H, WANG Y J, ZHANG J X. Cytological study of embryo and endosperm abortion in two seedless grape varieties. Northern Horticulture, 2016(3): 31-35. (in Chinese)
[3]
BAYDAR N G, HARMANKAYA N. Changes in endogenous hormone levels during the ripening of grape cultivars having different berry set mechanisms. Turkish Journal of Agriculture and Forestry, 2005, 29(3): 205-210.
[4]
陶建敏, 庄智敏, 章镇, 邵宏干, 蔡斌华. 几种生长调节剂对火星无核葡萄种子形成的影响. 果树学报, 2006, 23(4): 534-537.
TAO J M, ZHUANG Z M, ZHANG Z, SHAO H G, CAI B H. Effects of auxins and cytokinins on seed trace development of stenospermic grape cultivar Mars. Journal of Fruit Science, 2006, 23(4): 534-537. (in Chinese)
[5]
LI S S, LIU K K, YU S S, JIA S S, CHEN S, FU Y H, SUN F, LUO Q W, WANG Y J. The process of embryo abortion of stenospermocarpic grape and it develops into plantlet in vitro using embryo rescue. Plant Cell, Tissue and Organ Culture, 2020, 143(2): 389-409.

doi: 10.1007/s11240-020-01926-y
[6]
潘学军, 李顺雨, 张文娥, 刘崇怀. 种子败育型葡萄胚珠中内源多胺含量与胚珠发育及败育的关系. 果树学报, 2011, 28(5): 770-775.
PAN X J, LI S Y, ZHANG W E, LIU C H. Endogenous polyamines in stenospermocarpic grape ovules and their relationship with ovule development and abortion. Journal of Fruit Science, 2011, 28(5): 770-775. (in Chinese)
[7]
贺普超. 葡萄学. 北京: 中国农业出版社, 1999: 244-247, 255.
HE P C. Viticulture. Beijing: China Agriculture Press, 1999: 244-247, 255. (in Chinese)
[8]
GUSTAFSON F G. The cause of natural parthenocarpy. American Journal of Botany, 1939, 26(3): 135-138.

doi: 10.1002/ajb2.1939.26.issue-3
[9]
DO AMARAL A L, DE OLIVEIRA P R D, CZERAINSKI A B C, CAMARGO U A. Embryo growth stages on plant obtention from crosses between seedless grape parents. Revista Brasileira de Fruticultura, 2001, 23: 647-651.

doi: 10.1590/S0100-29452001000300041
[10]
CHEN W, LU L X. Endogenous hormones in relation to embryo development in litchi. Acta Horticulturae, 2001, 558: 247-250.
[11]
QUITTENDEN L J, DAVIES N W, SMITH J A, MOLESWORTH P P, TIVENDALE N D, ROSS J J. Auxin biosynthesis in pea: Characterization of the tryptamine pathway. Plant Physiology, 2009, 151(3): 1130-1138.

doi: 10.1104/pp.109.141507 pmid: 19710233
[12]
CHEN D, DENG Y T, ZHAO J. Distribution and change patterns of free IAA, ABP 1 and PM H+-ATPase during ovary and ovule development of Nicotiana tabacum L. Journal of Plant Physiology, 2012, 169(2): 127-136.

doi: 10.1016/j.jplph.2011.08.017
[13]
HOSSAIN A B M S, ALENAZI M M, TAHA R M. Seedless okra production by indole 3-acetic acid micro syringe injection on flower bud, ovary and shoot xylem and its vitamin and mineral content development: An innovation. Scientia Horticulturae, 2021, 283: 110010.

doi: 10.1016/j.scienta.2021.110010
[14]
BEVERIDGE C A, KYOZUKA J. New genes in the strigolactone- related shoot branching pathway. Current Opinion in Plant Biology, 2010, 13(1): 34-39.

doi: 10.1016/j.pbi.2009.10.003
[15]
FRÉBORT I, KOWALSKA M, HLUSKA T, FRÉBORTOVÁ J, GALUSZKA P. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 2011, 62(8): 2431-2452.

doi: 10.1093/jxb/err004 pmid: 21321050
[16]
NOOKARAJU A, BARRETO A S, KARIBASAPPA G S, AGRAWAL D C. Synergistic effect of CPPU and benzyladenine on embryo rescue in six stenospermocarpic cultivars of grapevine. Vitis Journal of Grapevine Research, 2007, 46(4): 188-191.
[17]
KHOSHANDAM L, DOULATI B H, JALILI M R, DARWISHZADEH R. Effect of BA and ovule developmental stages on embryo rescue in Perlette grape (Vitis Vinifera L.) cultivar. European Online Journal of Natural and Social Sciences, 2017, 6: 1-9.
[18]
ZHU P P, ZHANG J X. Effects of pre-bloom spraying thidiazuron and different embryo development media on seedless grape embryo rescue. New Zealand Journal of Crop and Horticultural Science, 2022: 1-28.
[19]
SWAIN S M, REID J B, KAMIYA Y. Gibberellins are required for embryo growth and seed development in pea. The Plant Journal, 1997, 12(6): 1329-1338.

doi: 10.1046/j.1365-313x.1997.12061329.x
[20]
CHENG C X, XU X Z, SINGER S D, LI J, ZHANG H J, GAO M, WANG L, SONG J Y, WANG X P. Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS ONE, 2013, 8(11): e80044.

doi: 10.1371/journal.pone.0080044
[21]
KHAVARI-NEJAD R A, NAJAFI F, RANJBARI M. The interactive effects of cadmium and GA3 on tomato (Lycopersicon esculentum Mill. cv. CH) plants photosynthesis, anthocyanin, proline and total phenolic contents. Romanian Journal of Biology, 2016, 2: 43-52.
[22]
崔梦杰, 王晨, 张文颖, 汤崴, 朱旭东, 李晓鹏, 房经贵. 无核葡萄研究进展. 植物生理学报, 2017, 53(3): 317-330.
CUI M J, WANG C, ZHANG W Y, TANG W, ZHU X D, LI X P, FANG J G. Research progress of seedless grape. Plant Physiology Journal, 2017, 53(3): 317-330. (in Chinese)

doi: 10.1104/pp.53.2.317
[23]
MATILLA A J, MATILLA-VÁZQUEZ M A. Involvement of ethylene in seed physiology. Plant Science, 2008, 175(1/2): 87-97.

doi: 10.1016/j.plantsci.2008.01.014
[24]
TSAI W C, HSIAO Y Y, PAN Z J, KUOH C S, CHEN W H, CHEN H H. The role of ethylene in orchid ovule development. Plant Science, 2008, 175(1/2): 98-105.

doi: 10.1016/j.plantsci.2008.02.011
[25]
MOU W S, KAO Y T, MICHARD E, SIMON A A, LI D D, WUDICK M M, LIZZIO M A, FEIJÓ J A, CHANG C R. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nature Communications, 2020, 11(1): 4082.

doi: 10.1038/s41467-020-17819-9
[26]
WASTERNACK C, FORNER S, STRNAD M, HAUSE B. Jasmonates in flower and seed development. Biochimie, 2013, 95(1): 79-85.

doi: 10.1016/j.biochi.2012.06.005 pmid: 22705387
[27]
FILGUEIRAS C C, MARTINS A D, PEREIRA R V, WILLETT D S. The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. International Journal of Molecular Sciences, 2019, 20(23): 5851.

doi: 10.3390/ijms20235851
[28]
LI Z Q, JIAO Y T, ZHANG C, DOU M R, WENG K, WANG Y J, XU Y. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless. Plant Biotechnology Journal, 2021, 19(9): 1824-1838.

doi: 10.1111/pbi.v19.9
[29]
FINKELSTEIN R R, TENBARGE K M, SHUMWAY J E, CROUCH M L. Role of ABA in maturation of rapeseed embryos. Plant Physiology, 1985, 78(3): 630-636.

doi: 10.1104/pp.78.3.630 pmid: 16664296
[30]
PONCE M, GUIÑAZÚ M, TIZIO R. Effect of putrescine on embryo development in the stenospermocarpic grape cvs Emperatriz and Fantasy. Vitis, 2002, 41: 53-54.
[31]
MALIK A U, SINGH Z. Endogenous free polyamines of mangos in relation to development and ripening. Journal of the American Society for Horticultural Science, 2004, 129(3): 280-286.

doi: 10.21273/JASHS.129.3.0280
[32]
郭印山, 郭修武, 张海娥. 葡萄胚胎发育与败育过程中胚珠的多胺含量变化. 植物生理学通讯, 2007, 43(1): 53-56.
GUO Y S, GUO X W, ZHANG H E. Changes in polyamine contents of ovules during grape (Vitis vinifera L.) embryo development and abortion. Plant Physiology Communications, 2007, 43(1): 53-56. (in Chinese)
[33]
贺军虎, 陈业渊, 赵小青, 陈华蕊. ‘金煌’杧胚正常与胚败育果实内源多胺的变化. 热带作物学报, 2013, 34(10): 1972-1976.
HE J H, CHEN Y Y, ZHAO X Q, CHEN H R. The change of endogenous polyamines in ‘Jinhuang’ mango fruit with normal and aborted embryo. Chinese Journal of Tropical Crops, 2013, 34(10): 1972-1976. (in Chinese)
[34]
SHIOZAKI S, OGATA T, HORIUCHI S. Endogenous polyamines in the pericarp and seed of the grape berry during development and ripening. Scientia Horticulturae, 2000, 83: 33-41.

doi: 10.1016/S0304-4238(99)00064-3
[35]
ALBURQUERQUE N, EGEA J, BURGOS L, MARTÍNEZ- ROMERO D, VALERO D, SERRANO M. The influence of polyamines on apricot ovary development and fruit set. Annals of Applied Biology, 2006, 149: 27-33.

doi: 10.1111/aab.2006.149.issue-1
[36]
CAO D D, HU J, ZHU S J, HU W M, KNAPP A. Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (Zea mays L.) seed. Scientia Horticulturae, 2010, 123(3): 301-307.

doi: 10.1016/j.scienta.2009.10.006
[37]
RAMMING D W. The use of embryo culture in fruit breeding. HortScience, 1990, 25(4): 393-398.

doi: 10.21273/HORTSCI.25.4.393
[38]
朱佩佩, 罗燚佳, 向雯, 张明磊, 张剑侠. 抗寒无核葡萄杂种胚挽救及分子标记辅助选择. 中国农业科学, 2021, 54(6): 1218-1228. doi: 10.3864/j.issn.0578-1752.2021.06.012.
ZHU P P, LUO Y J, XIANG W, ZHANG M L, ZHANG J X. Rescue and molecular marker assisted-selection of the cold- resistant seedless grape hybrid embryo. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228. doi: 10.3864/j.issn.0578-1752.2021.06.012. (in Chinese)
[39]
XU T F, GUO Y R, WANG W Y, YUAN X J, CHU Y N, WANG X W, HAN Y L, WANG Y J, SONG R, FANG Y L, WANG L J, XU Y. Effects of exogenous paclobutrazol and sampling time on the efficiency of in vitro embryo rescue in the breeding of new seedless grape varieties. Journal of Integrative Agriculture, 2022, 21(6): 1633-1644.

doi: 10.1016/S2095-3119(21)63815-7
[40]
GARCIA-PAPI M A, GARCIA-MARTINEZ J L. Endogenous plant growth substances content in young fruits of seeded and seedless Clementine mandarin as related to fruit set and development. Scientia Horticulturae, 1984, 22(3): 265-274.

doi: 10.1016/0304-4238(84)90060-8
[41]
祁业凤, 刘孟军. 两个胚败育率不同的枣品种果实生育期内源激素的变化. 园艺学报, 2004, 31(6): 800-802.
QI Y F, LIU M J. Change of endogenous hormone in cultivars of Chinese jujube with different type of embryo abortion. Acta Horticulturae Sinica, 2004, 31(6): 800-802. (in Chinese)
[42]
LULSDORF M M, YUAN H Y, SLATER S M H, VANDENBERG A, HAN X M, ZAHARIA L I, ABRAMS S R. Endogenous hormone profiles during early seed development of C. arietinum and C. anatolicum. Plant Growth Regulation, 2013, 71(2): 191-198.

doi: 10.1007/s10725-013-9819-2
[43]
QIU Z L, WEN Z, YANG K, TIAN T, QIAO G, HONG Y, WEN X P. Comparative proteomics profiling illuminates the fruitlet abscission mechanism of sweet cherry as induced by embryo abortion. International Journal of Molecular Sciences, 2020, 21(4): 1200.

doi: 10.3390/ijms21041200
[44]
ZHU P P, TIAN Y C, LIU Q Y, GE Q Y, ZHANG J X. Optimisation of embryo rescue for cold-resistant seedless grapevine. New Zealand Journal of Crop and Horticultural Science, 2022: 1-14.
[45]
ZHU P P, GU B, LI P Y, SHU X, ZHANG X, ZHANG J X. New cold-resistant, seedless grapes developed using embryo rescue and marker-assisted selection. Plant Cell, Tissue and Organ Culture, 2020, 140(3): 551-562.

doi: 10.1007/s11240-019-01751-y
[46]
EBADI A, MOGHADAM J E, FATAHI R. Evaluation of 22 populations achieved from controlled crossing between some seeded × seedless grapevine cultivars. Scientia Horticulturae, 2009, 119(4): 371-376.

doi: 10.1016/j.scienta.2008.08.014
[47]
XUE W Y, LIU N, ZHANG T T, LI J, CHEN P P, YANG Y T, CHEN S X. Substance metabolism, IAA and CTK signaling pathways regulating the origin of embryogenic callus during dedifferentiation and redifferentiation of cucumber cotyledon nodes. Scientia Horticulturae, 2022, 293: 110680.

doi: 10.1016/j.scienta.2021.110680
[48]
范建新, 邓仁菊, 王永清, 罗立娜, 韩树全, 刘荣. 火龙果茎段及花药愈伤组织内源激素含量的测定. 分子植物育种, 2017, 15(12): 5093-5102.
FAN J X, DENG R J, WANG Y Q, LUO L N, HAN S Q, LIU R. Determination of endogenous hormones in callus originated from stem and anther culture of pitaya. Molecular Plant Breeding, 2017, 15(12): 5093-5102. (in Chinese)
[49]
MENCARELLI F, AGOSTINI R, BOTONDI R, MASSANTINI R. Ethylene production, ACC content, PAL and POD activities in excised sections of straight and bent gerbera scapes. Journal of Horticultural Science, 1995, 70(3): 409-416.

doi: 10.1080/14620316.1995.11515310
[50]
WANG Y, MOPPER S, HASENSTEIN K H. Effects of salinity on endogenous ABA, IAA, JA, and SA in iris hexagona. Journal of Chemical Ecology, 2001, 27(2): 327-342.

pmid: 14768818
[51]
YALPANI N, SILVERMAN P, WILSON T M, KLEIER D A, RASKIN I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. The Plant Cell, 1991, 3(8): 809-818.
[52]
FLORES H E, GALSTON A W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiology, 1982, 69(3): 701-706.

doi: 10.1104/pp.69.3.701 pmid: 16662279
[53]
MAHANIL S, GARRIS A J, OWENS C M, RAMMING D W, CADLE-DAVIDSON L. Development of molecular markers for powdery mildew resistance in grapevines. Acta Horticulturae, 2014, 1046: 91-99.
[54]
王飞, 王跃进, 周会玲, 万怡震, 杨进孝. 无核葡萄与中国野生葡萄杂种胚发育和败育的细胞学研究. 西北农林科技大学学报(自然科学版), 2005, 33(3): 61-65.
WANG F, WANG Y J, ZHOU H L, WAN Y Z, YANG J X. Cytological study of embryo development and abortion in hybrid progeny of seedless grape and Chinese wild grapes. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(3): 61-65. (in Chinese)
[55]
ROYO C, TORRES-PÉREZ R, MAURI N, DIESTRO N, CABEZAS J A, MARCHAL C, LACOMBE T, IBÁÑEZ J, TORNEL M, CARREÑO J, MARTÍNEZ-ZAPATER J M, CARBONELL- BEJERANO P. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiology, 2018, 177(3): 1234-1253.

doi: 10.1104/pp.18.00259 pmid: 29853599
[56]
SHAO F X, WANG S, ZHANG S Y, CHEN J, FENG C. Observation of embryo abortion characteristics of Ziziphus jujuba mill. ‘Zhongqiusucui’. HortScience, 2021, 56(5): 595-602.

doi: 10.21273/HORTSCI15760-21
[57]
陈庭巧, 袁涛, 乔红雍, 徐珂. 大花黄牡丹二次枝对结实率的影响及胚珠败育生理机制研究. 西北农林科技大学学报(自然科学版), 2022, 50(9): 39-52.
CHEN T Q, YUAN T, QIAO H Y, XU K. Effect of secondary branches on seed setting rate and physiological mechanism of ovule abortion in Paeonia ludlowii. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(9): 39-52. (in Chinese)
[58]
TANG D M, WANG Y J, CAI J S, ZHAO R H. Effects of exogenous application of plant growth regulators on the development of ovule and subsequent embryo rescue of stenospermic grape (Vitis vinifera L.). Scientia Horticulturae, 2009, 120(1): 51-57.

doi: 10.1016/j.scienta.2008.09.018
[59]
EBADI A, AALIFAR M, FARAJPOUR M, FATAHI MOGHADDAM M R. Investigating the most effective factors in the embryo rescue technique for use with ‘Flame Seedless’ grapevine (Vitis vinifera). The Journal of Horticultural Science and Biotechnology, 2016, 91(5): 441-447.

doi: 10.1080/14620316.2016.1162026
[60]
JIAO Y T, LI Z Q, XU K Y, GUO Y R, ZHANG C, LI T M, JIANG Y X, LIU G T, XU Y. Study on improving plantlet development and embryo germination rates in vitro embryo rescue of seedless grapevine. New Zealand Journal of Crop and Horticultural Science, 2018, 46(1): 39-53.

doi: 10.1080/01140671.2017.1338301
[1] YE Nan, ZHU Yan, ZHAO YuanShou, ZHU JianNing, MEN JiaWei, CHEN Fu, KONG DeYuan, ZHANG WeiBing, ZONG YuanYuan, LI YongCai. Effects of Seed Soaking with Chitooligosaccharide on the Growth of Sprout and Endogenous Phytohormone Content in Potato Minitubers [J]. Scientia Agricultura Sinica, 2023, 56(4): 788-800.
[2] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[3] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[4] ZHAO Fang, DING Qiang, XIA ShuWen, GAO YunDong, LAN GuoCheng, LIN ZhiPing, WANG HuiLi, ZHONG JiFeng. Effects of Pladienolide B on Expression of Pluripotency Related Genes and Cell Viability of Bovine Embryonic Stem Cells [J]. Scientia Agricultura Sinica, 2023, 56(11): 2186-2201.
[5] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[6] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[7] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[8] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[9] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[10] LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
[11] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[12] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
[13] ZHU ShiPing,WANG FuSheng,CHEN Jiao,YU Xin,YU Hong,LUO GuoTao,HU Zhou,FENG JinYing,ZHAO XiaoChun,HONG QiBin. Seed Traits and Seedling Performances of Different Types of Citrus Rootstock [J]. Scientia Agricultura Sinica, 2020, 53(3): 585-599.
[14] XIE KaiDong,PENG Jun,YUAN DongYa,QIANG RuiRui,XIE ShanPeng,ZHOU Rui,XIA QiangMing,WU XiaoMeng,KE FuZhi,LIU GaoPing,GROSSER Jude W,GUO WenWu. Production of Citrus Triploids Based on Interploidy Crossing with Bendizao and Man Tangerines as Female Parents [J]. Scientia Agricultura Sinica, 2020, 53(23): 4961-4968.
[15] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!