Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (12): 2275-2290.doi: 10.3864/j.issn.0578-1752.2025.12.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Physiological Characteristics in Response to Salt Stress and Allelic Variation and Expression of Salt-Responsive Genes in Seedling Stage of Nangeng Rice Varieties with Salt-Tolerance Ability

DENG LiCheng1(), LI Cheng2, HE Lei2, AN HongQiang2, WANG CaiLin2, ZHANG YaDong2, ZHAO ChangJiang1(), LU Kai2()   

  1. 1 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang
    2 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing 210014
  • Received:2024-12-20 Accepted:2025-01-23 Online:2025-06-20 Published:2025-06-20
  • Contact: ZHAO ChangJiang, LU Kai

Abstract:

【Objective】Salt stress is one of the main environmental stresses that restrict rice production. Studying the physiological characteristics under salt stress and analysis the allelic variation and expression of salt-tolerance genes provide key gene resources and genetic materials for breeding salt-tolerance rice varieties. 【Method】This study first evaluated the salt-tolerance ability of the Nangeng series high-quality rice varieties/lines during the seedling stage, using survival rate as an indicator for screening salt-tolerance varieties, which physiological changes under salt stress were analyzed, including chlorophyll, Na+, K+, MDA, H2O2 and soluble sugar. The variation types and expression levels of salt-tolerance genes in rice varieties with resistance to high salt concentration were also analyzed to explaining their molecular mechanisms in response to salt stress. 【Result】Under the condition of treating with 140 mmol·L-1 NaCl for 6 days, the survival rates of NG9108, NG5718, and NGY1 were greater than 60%, with the highest survival rate among the tested varieties. Compared with Nipponbare, the seedlings of NG9108, NG5718, and NGY1 under salt stress had higher chlorophyll content and lower MDA content, indicating that salt stress caused less cell damage to the three varieties. The Na+/K+ values in the roots of NG9108, NG5718, and NGY1 were significantly higher than those in Nipponbare, while the Na+/K+ values in the aerial parts were significantly lower than those in Nipponbare, implying that the three varieties absorb or store more Na+ in roots, but transport less Na+ upwards, which is beneficial for maintaining cell ion balance and causing less ion toxicity and osmotic stress in aerial parts of the seedlings. The three salt-tolerance varieties have 94 SNPs or InDel sites, distributing in exons, introns, 5′UTR, and 3′UTR of the 23 salt-tolerance genes. 24 variation sites of 11 genes occur in the exons, including 7 genes with frameshift mutations or missense mutations which distributed in Os02g0813500 (OsGR2), Os05g0343400 (OsWRKY53), Os06g0685700 (OsRST1), Os07g0685700 (OsEIL2), Os10g0431000 (OsPQT3), Os11g044600 (OsRSS3), Os12g0150200 (P450). Salt stress significantly induces expression of OsSKC1, OsBAG4, OsGPX1, OsCCX2, OsGR3, OsDREB2a, OsRAB21, OsP5CS, OsbZIP23, OsAPX37 and OsLEA3, which help to enhance salt tolerance and reduce the adverse effects of salt damage on rice growth. 【Conclusion】NG9108, NG5718 and NGY1 showed strong salt tolerance phenotype during the seedling growth stage, which is closely related to the balance of sodium and potassium ions under salt stress, allelic variations of multiple salt tolerance genes, and gene expression levels. NG9108, NG5718 and NGY1 have pyramided multiple salt tolerant and high-quality genes, which can be used as backbone parents for genetic improvement and breeding.

Key words: NG9108, NG5718, NGY1, salt stress, salt-tolerance gene, ionic balance, genome sequencing

Table 1

The information of 25 tested Nangeng series materials"

品种名称
Variety
审定时间
Approval time
生态类型
Ecotype
基因型
Genotype
南粳46 NG46 2008 中熟晚粳Medium-maturing late-japonica Wxmp
南粳5055 NG5055 2011 早熟晚粳Early-maturing late-japonica Wxmp
南粳9108 NG9108 2013 迟熟中粳Late-maturing mid-japonica Wxmp
南粳3908 NG3908 2018 早熟晚粳Early-maturing late-japonica Wxmp
南粳晶谷NGJG 2019 早熟晚粳Early-maturing late-japonica Wxmp
南粳5718 NG5718 2019 中熟中粳Mid-maturing mid-japonica Wxmp
南粳7718 NG7718 2020 中熟中粳Mid-maturing mid-japonica Wxmp
南粳60 NG60 2020 中熟中粳Mid-maturing mid-japonica Wxb
南粳9036 NG9036 2020 迟熟中粳Late-maturing mid-japonica Wxmp
南粳盐1号NGY1 2021 中熟中粳Mid-maturing mid-japonica Wxb
南粳66 NG66 2021 中熟中粳Mid-maturing mid-japonica Wxmp
南粳5758 NG5758 2021 中熟中粳Mid-maturing mid-japonica Wxb
南粳9308 NG9308 2021 中熟中粳Mid-maturing mid-japonica Wxmp
南粳518 NG518 2021 中熟中粳Mid-maturing mid-japonica Wxmp
南粳香糯NGXN 2021 早熟晚粳Early-maturing late-japonica wx
南粳糯2号NGN2 2021 迟熟中粳Late-maturing mid-japonica wx
南粳8911 NG8911 2022 早熟晚粳Early-maturing late-japonica Wxmp
南粳72 NG72 2022 中熟中粳Mid-maturing mid-japonica Wxmp
南粳68 NG68 2022 中熟中粳Mid-maturing mid-japonica Wxmp
南粳9068 NG9068 2022 迟熟中粳Late-maturing mid-japonica Wxmp
南粳5818 NG5818 2023 中熟中粳Mid-maturing mid-japonica Wxmp
南粳9058 NG9058 2024 早熟晚粳Early-maturing late-japonica Wxmp
NYJ0020 生产试验 Production test 中熟中粳Mid-maturing mid-japonica Wxb
宁HF16 NHF16 生产试验 Production test 迟熟中粳Late-maturing mid-japonica Wxmp
宁HF06 NHF06 生产试验 Production test 中熟中粳Mid-maturing mid-japonica Wxmp

Table 2

qPCR primer sequences"

基因号 Locus ID 基因 Gene 引物序列 Primer sequence (5′-3′)
Os01g0307500 SKC1 F: CATCGTCGTCGAGGTTATCA
R: TCCCTTGTTTGCTCCACTTC
Os01g0506100 OsSOAR1 F: GAGCGGGCTTACAATATCCTTCTC
R: CAAGAGCGTACACAATGGGGTT
Os01g0532600 OsHKT3 F: TTTCACCACTCGGCTTCAAC
R: AATGTTCCCGTAGGCACTTATC
Os01g0811300 OsSUVH7 F: ATGATGAGCCTTACGGTGGT
R: GTCTTAGGGCGTTTCTTTGTT
Os01g0831200 OsBAG4 F: CAAGGGCACAAAGGAAGGC
R: ATTGCTCCCAGTCGGTGTTTA
Os01g0847200 OsVTC1-1 F: AACTGCTGGCCCTCTTGCTCTA
R: TCCACCATTCCAGTGACCTCCT
Os02g0175000 OsHKT6 F: GCATCACAGAACGGGACTCGAT
R: GCGTGCATCATGGTTCAGTAGC
Os02g0553200 OsAPx8 F: TAGTGCTACCCACAGATGCTG
R: CACCAAGGTCGCTCAGTTT
Os02g0579600 OsMADS27 F: ATCATCGGCAGTTGATGGG
R: GAACTAGACTTCCCTTCCGATTC
Os02g0640500 SIT1 F: AAGACACGAACGGCGGTCAACT
R: GCACCAGGCTTGCTTCTTCCAC
Os02g0813500 OsGR2 F: CTCAACGTGTCAACATTCCTGG
R: TGTAATCTGATTCCCCTTCCCT
Os03g0285800 OsMAPK5 F: CGACATGATGACGGAGTACG
R: AGGTGAGCATCCTCTCGATG
Os03g0332400 OsGLYII2 F: TACTATGCCTGCACACACCGT
R: TCTGGCAGATCAACACGCAT
Os03g0656500 OsCCX2 F: TTCGTGTCCACCGTTGTT
R: AGTATGGCGAGGAGTGAGC
Os03g0707600 OsSLR1 F: ACTACTACTCCACCATGTTCGATTC
R: AGGTACACCTCGGACATGAGG
Os03g0764800 OsSAPK8 F: GGCTATTCTAAGTCTTCAGTTCTCCA
R: GCCATCGTATTCTTTCTTCAACAG
Os04g0556300 OsGPX1 F: CGACTTCACCGTCAAGGATGC
R: TGGCTCAGCTCAGTGTAGTTGGA
Os04g0584600 OsCDPK13 F: AATGCTCAATCCTCGCCCAAAG
R: CCTTCAACCCAGCGATTTCCTC
Os05g0148600 OsNHX3 F: TGTATTCCCTTTGTCTTTCTTATCC
R: GAAGTGGGTCTATGATTGACTGG
Os05g0322900 OsWRKY45 F: CGCAAGTACGGGCAGAAGGAGA
R: TGTGCTCGCCGATGTAGGTGAC
Os05g0343400 OsWRKY53 F: CGACTTCTCCTTCCACACCAACTC
R: CACTTGCTGCTCTTGCTCCTTGA
Os05g0455500 OsP5CS1 F: CTGTCTTGGCTTCAAATAGCGG
R: TTGCGGCAACAGCCATCTC
Os06g0183100 OsRR22 F: GTAACATCAACCAACCAGGCTAT
R: TTACCGAACTTCCTCCTAACAAC

Fig. 1

Salt-tolerance evaluation of seedlings of Nangeng series rice cultivars A: Compare of survive rate after salt treatment. Yellow box: Survivalrate after NaCl treatment for 4 d; Brown box: Survival rate after NaCl treatment for 6 d; B: Compare of phenotypes after salt treatment; C: Analysis of the content of chlorophyll. **: P<0.01. The same as below"

Fig. 2

Effect of salt stress on the content of Na+, K+, and Na+/K+ ratio in roots and aerial parts of rice seedlings"

Fig. 3

Analysis of the content of MDA, H2O2 and soluble sugar in rice seedlings under salt stress A: Analysis of the content of MDA; B: Analysis of the content of H2O2; C: Analysis of the content of soluble sugar"

Table 3

Mutated genes and sites in exon"

基因号
Locus ID
品种
Variety
位置
Position (bp)
变异方式
Variation type
变异位置
Variation position
基因描述
Gene descript
Os01g0307500 南粳5718/南粳盐1号
NG5718/NGY1
11462157 G→C 外显子
Exon
正调控
Positive regulator
Os01g0811300 南粳9108/南粳盐1号
NG9108/NGY1
34482225 T→C 外显子
Exon
正调控
Positive regulator
Os02g0813500 南粳5718/南粳9108/南粳盐1号
NG5718/NG9108/NGY1
34839061 G→A 错义突变
Missense mutation
正调控
Positive regulator
南粳5718/南粳9108/南粳盐1号
NG5718/NG9108/NGY1
34840365, 34843244 T→C, T→C 外显子
Exon
Os03g0656500 南粳5718/南粳9108/南粳盐1号
NG5718/NG9108/NGY1
25615005, 25615089, 25615275, 25615287 T→C, C→T,
G→A, T→C
外显子
Exon
正调控
Positive regulator
Os05g0343400 南粳5718
NG5718
16151108 C→G 错义突变
Missense mutation
负调控
Negative regulator
南粳5718
NG5718
16151637 T→C 外显子
Exon
Os06g0685700 南粳5718
NG5718
28588881 C→A 错义突变
Missense mutation
负调控
Negative regulator
Os07g0685700 南粳9108
NG9108
29117797 G→A 错义突变
Missense mutation
负调控
Negative regulator
Os10g0415300 南粳盐1号
NGY1
14508099 G→A 外显子
Exon
正调控
Positive regulator
Os10g0431000 南粳5718/南粳9108/南粳盐1号
NG5718/NG9108/NGY1
15368188 T→A 外显子
Exon
负调控
Negative regulator
南粳5718/南粳9108/南粳盐1号
NG5718/NG9108/NGY1
15368510, 15368511 C→G, G→C 错义突变
Missense mutation
南粳5718/南粳9108
NG5718/NG9108
15368347, 15368351 GAATA→G, A→AGCGG 移码突变
Frameshift mutation
南粳盐1号
NGY1
15368351 A→G 错义突变
Missense mutation
Os11g0446000 南粳5718/南粳9108/南粳盐1号
NG5718/NG9108/NGY1
14785491 T→G 外显子
Exon
正调控
Positive regulator
Os12g0150200 南粳5718/南粳9108/南粳盐1号
NG5718/NG9108/NGY1
2468678, 2469251 C→T, C→T 外显子
Exon
正调控
Positive regulator
南粳盐1号
NGY1
2468552 C→T 外显子
Exon
南粳盐1号
NGY1
2469441 T→A 错义突变
Missense mutation

Fig. 4

Variation sites in exons of salt-tolerance genes of NG9108, NG5718 and NGY1 Gray boxes: Exons; White boxes: 5′UTR/3′UTR; Lines: Introns; Red arrows: NG9108; Yellow arrows: NG5718; Green arrows: NGY1; Orange arrows: NG5718/NGY1; Pink arrows: NG9108/NGY1; Purple arrows: NG9108/NG5718; Blue arrows: NG9108/NG5718/NGY1"

Fig. 5

Expression levels of salt-tolerance genes with variations in NG9108, NG5718 and NGY1"

Fig. 6

Expression levels of salt-responsive genes in NG9108, NG5718 and NGY1"

[1]
马国辉, 郑殿峰, 母德伟, 王奉斌, 戴其根, 魏中伟, 冯乃杰, 王才林. 耐盐碱水稻研究进展与展望. 杂交水稻, 2024, 39(1): 1-10.
MA G H, ZHENG D F, MU D W, WANG F B, DAI Q G, WEI Z W, FENG N J, WANG C L. Research progress and prospect of saline-alkali tolerant rice. Hybrid Rice, 2024, 39(1): 1-10. (in Chinese)
[2]
孙明法. 加强耐盐碱水稻研究让盐碱地变成新粮仓. 大麦与谷类科学, 2022, 39(3): 1-2, 34.
SUN M F. Strengthen research on saline-alkali tolerant rice and turn saline-alkali land into a new granary. Barley and Cereal Sciences, 2022, 39(3): 1-2, 34. (in Chinese)
[3]
LU K, LI C, GUAN J, LIANG W H, CHEN T, ZHAO Q Y, ZHU Z, YAO S, HE L, WEI X D, ZHAO L, ZHOU L H, ZHAO C F, WANG C L, ZHANG Y D. The PPR-domain protein SOAR1 regulates salt tolerance in rice. Rice, 2022, 15(1): 62.

doi: 10.1186/s12284-022-00608-x pmid: 36463341
[4]
YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 2018, 217(2): 523-539.

doi: 10.1111/nph.14920 pmid: 29205383
[5]
LIANG X Y, LI J F, YANG Y Q, JIANG C F, GUO Y. Designing salt stress-resilient crops: Current progress and future challenges. Journal of Integrative Plant Biology, 2024, 66(3): 303-329.

doi: 10.1111/jipb.13599
[6]
MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.

doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[7]
ZHU J K. Plant salt tolerance. Trends in Plant Science, 2001, 6(2): 66-71.

doi: 10.1016/s1360-1385(00)01838-0 pmid: 11173290
[8]
CHENG X, HE Q, TANG S, WANG H, ZHANG X, LV M, LIU H, GAO Q, ZHOU Y, WANG Q, MAN X, LIU J, HUANG R, WANG H, CHEN T, LIU J. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. New Phytologist, 2021, 230(3): 1017-1033.
[9]
HAZMAN M, HAUSE B, EICHE E, NICK P, RIEMANN M. Increased tolerance to salt stress in opda-deficient rice allene oxide cyclase mutants is linked to an increased ros-scavenging activity. Journal of Experimental Botany, 2015, 66(11): 3339-3352.

doi: 10.1093/jxb/erv142 pmid: 25873666
[10]
LIU C T, MAO B G, YUAN D Y, CHU C C, DUAN M J. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal, 2022, 10(1): 13-25.
[11]
REN Z H, GAO J P, LI L G, CAI X L, HUANG W, CHAO D Y, ZHU M Z, WANG Z Y, LUAN S, LIN H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
[12]
LIU S P, ZHENG L Q, XUE Y H, ZHANG Q, WANG L, SHOU H X. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 2010, 53(6): 444-452.
[13]
FUKUDA A, NAKAMURA A, HARA N, TOKI S, TANAKA Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta, 2011, 233(1): 175-188.
[14]
ZHAO S S, ZHANG Q K, LIU M Y, ZHOU H P, MA C L, WANG P P. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 2021, 22(9): 4609.
[15]
HE Y Q, YANG B, HE Y, ZHAN C F, CHENG Y H, ZHANG J H, ZHANG H S, CHENG J P, WANG Z F. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. The Plant Journal, 2019, 97(6): 1089-1104.

doi: 10.1111/tpj.14181 pmid: 30537381
[16]
ARABIA S, SHAH M N A, SAMI A A, GHOSH A, ISLAM T. Identification and expression profiling of proline metabolizing genes in Arabidopsis thaliana and Oryza sativa to reveal their stress-specific transcript alteration. Physiology and Molecular Biology of Plants, 2021, 27(7): 1469-1485.
[17]
LI H W, ZANG B S, DENG X W, WANG X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234(5): 1007-1018.
[18]
TANG W, SUN J Q, LIU J, LIU F F, YAN J, GOU X J, LU B R, LIU Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting Glycine betaine biosynthesis in rice (Oryza sativa). Plant Molecular Biology, 2014, 86(4/5): 443-454.
[19]
GHOSH A, PAREEK A, SOPORY S K, SINGLA-PAREEK S L. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. The Plant Journal, 2014, 80(1): 93-105.

doi: 10.1111/tpj.12621 pmid: 25039836
[20]
FAN X R, JIANG H Z, MENG L J, CHEN J G. Gene mapping, cloning and association analysis for salt tolerance in rice. International Journal of Molecular Sciences, 2021, 22(21): 11674.
[21]
GANIE S A, MOLLA K A, HENRY R J, BHAT K V, MONDAL T K. Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 2019, 132(4): 851-870.

doi: 10.1007/s00122-019-03301-8 pmid: 30759266
[22]
王才林. 江苏省优良食味粳稻品种培育的发展与启示. 中国稻米, 2022, 28(5): 82-91, 106.

doi: 10.3969/j.issn.1006-8082.2022.05.014
WANG C L. Development and enlightenment of Japonica rice breeding with good eating quality in Jiangsu Province. China Rice, 2022, 28(5): 82-91, 106. (in Chinese)
[23]
王才林, 张亚东, 赵春芳, 魏晓东, 姚姝, 周丽慧, 朱镇, 陈涛, 赵庆勇, 赵凌, 路凯, 梁文化. 江苏省优良食味粳稻的遗传与育种研究. 遗传, 2021, 43(5): 442-458.
WANG C L, ZHANG Y D, ZHAO C F, WEI X D, YAO S, ZHOU L H, ZHU Z, CHEN T, ZHAO Q Y, ZHAO L, LU K, LIANG W H. Inheritance and breeding of Japonica rice with good eating quality in Jiangsu province. Hereditas (Beijing), 2021, 43(5): 442-458. (in Chinese)
[24]
王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议. 中国稻米, 2019, 25(1): 1-6.
WANG C L, ZHANG Y D, ZHAO L, LU K, ZHU Z, CHEN T, ZHAO Q Y, YAO S, ZHOU L H, ZHAO C F, LIANG W H, SUN M F, YAN G H. Research status, problems and suggestions on salt-alkali tolerant rice. China Rice, 2019, 25(1): 1-6. (in Chinese)
[25]
王世壮, 聂亚敏, 黄婧芬, 张巧玲, 郑崇珂, 谢先芝, 王艳艳, 邢梦, 陈文熹, 陈子易, 郑晓明, 王文生, 杨庆文, 乔卫华. 水稻核心种质耐盐鉴定与分子标记开发应用. 植物遗传资源学报, 2025, 26(3) 470-480.
WANG S Z, NIE Y M, HUANG J F, ZHANG Q L, ZHENG C K, XIE X Z, WANG Y Y, XING M, CHEN W X, CHEN Z Y, ZHENG X M, WANG W S, YANG Q W, QIAO W H. Identification of rice core germplasm for salt tolerance and application of molecular marker development. Journal of Plant Genetic Resources, 2025, 26(3): 470-480. (in Chinese)
[26]
WU T M, LIN W R, KAO Y T, HSU Y T, YEH C H, HONG C Y, KAO C H. Identification and characterization of a novel chloroplast/ mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. Plant Molecular Biology, 2013, 83(4/5): 379-390.
[27]
YANG C, MA B, HE S J, XIONG Q, DUAN K X, YIN C C, CHEN H, LU X, CHEN S Y, ZHANG J S. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 2015, 169(1): 148-165.

doi: 10.1104/pp.15.00353 pmid: 25995326
[28]
TODA Y, TANAKA M, OGAWA D, KURATA K, KUROTANI K I, HABU Y, ANDO T, SUGIMOTO K, MITSUDA N, KATOH E, ABE K, MIYAO A, HIROCHIKA H, HATTORI T, TAKEDA S. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. The Plant Cell, 2013, 25(5): 1709-1725.
[29]
HAZMAN M, SÜHNEL M, SCHÄFER S, ZUMSTEG J, LESOT A, BELTRAN F, MARQUIS V, HERRGOTT L, MIESCH L, RIEMANN M, HEITZ T. Characterization of jasmonoyl-isoleucine (JA-ile) hormonal catabolic pathways in rice upon wounding and salt stress. Rice, 2019, 12(1): 45.

doi: 10.1186/s12284-019-0303-0 pmid: 31240493
[30]
YU J, ZHU C S, XUAN W, AN H Z, TIAN Y L, WANG B X, CHI W C, CHEN G M, GE Y W, LI J, DAI Z Y, LIU Y, SUN Z G, XU D Y, WANG C M, WAN J M. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nature Communications, 2023, 14(1): 3550.

doi: 10.1038/s41467-023-39167-0 pmid: 37321989
[31]
DENG P, JING W, CAO C J, SUN M F, CHI W C, ZHAO S L, DAI J Y, SHI X Y, WU Q, ZHANG B L, et al. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50): e2210338119.
[32]
ALFATIH A, WU J, JAN S U, ZHANG Z S, XIA J Q, XIANG C B. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant, Cell & Environment, 2020, 43(11): 2743-2754.
[33]
ZHANG Y, LAN H X, SHAO Q L, WANG R Q, CHEN H, TANG H J, ZHANG H S, HUANG J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). Journal of Experimental Botany, 2016, 67(1): 315-326.

doi: 10.1093/jxb/erv464 pmid: 26512055
[34]
SAKURABA Y, PIAO W L, LIM J H, HAN S H, KIM Y S, AN G, PAEK N C. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant & Cell Physiology, 2015, 56(12): 2325-2339.
[1] TENG MengXin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI JingYang, LI XinGuo. Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana [J]. Scientia Agricultura Sinica, 2025, 58(7): 1418-1433.
[2] SHAO JiaZhu, LÜ Wen, LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua. Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4248-4263.
[3] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
[4] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
[5] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[6] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[7] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[8] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[9] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[10] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[11] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[12] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[13] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[14] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[15] ShuJun MENG, XueHai ZHANG, QiYue WANG, Wen ZHANG, Li HUANG, Dong DING, JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!