Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (2): 238-251.doi: 10.3864/j.issn.0578-1752.2025.02.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain

ZHANG SiJia(), YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan()   

  1. College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Water-Saving Agriculture in North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, Hebei
  • Received:2024-08-04 Accepted:2024-11-04 Online:2025-01-21 Published:2025-01-21
  • Contact: WANG GuiYan

Abstract:

【Objective】Based on the long-term experiment in the North China Plain (NCP), the differences in soil nutrient and aggregate nutrient distribution between diversified crops and wheat-maize rotation systems were investigated. Additionally, it provided a comprehensive evaluation of soil quality indices (SQI), offering a scientific basis for enhancing soil quality and productivity in the NCP. 【Method】Four diversified crop rotation systems were evaluated, including spring sweet potato-winter wheat-summer maize (Psw-WM), spring peanut-winter wheat-summer maize (Pns-WM), spring sorghum-winter wheat-summer maize (Ps-WM), with winter wheat-summer maize (WM-WM) serving as the control. The soil samples from the 0-40 cm depth were collected during the second rotation in 2022, at the flowering and harvesting stages of winter wheat. The soil enzymes activities, aggregate stability, organic matter, and concentrations of nitrogen, phosphorus, and potassium in soil and aggregates of different sizes (>2.00 mm, 0.50-2.00 mm, 0.25-0.50 mm, and <0.25 mm) were assessed. The SQI for each crop rotation system was then comprehensively evaluated. 【Result】Compared with WM-WM, the three other crop rotations increased soil inorganic nitrogen content. Psw-WM significantly enhanced organic matter in the 0-20 cm layer, total nitrogen in soil aggregates (>2.00 mm, 0-10 cm), and organic matter in soil aggregates (>2.00 mm and 0.50-2.00 mm, 0-10 cm), which also increased cellulase, catalase, and alkaline protease activities. Pns-WM improved organic matter in the 20-40 cm layer and available potassium in soil aggregates (0.25-0.50 mm and >2.00 mm, 10-20 cm), as well as organic matter in soil aggregates (0-10 cm, >2.00 mm and 10-20 cm, >0.50 mm), which also increased sucrase, urease, and alkaline protease activities. Psw-WM improved the stability of 0-10 cm soil aggregates, while Pns-WM improved the stability of 0-30 cm soil aggregates. Both Pns-WM and Psw-WM significantly improved the SQI, with Pns-WM showing a higher improvement than Psw-WM. The path analysis revealed that the average weight diameter (MWD) of aggregates was a direct and significant affecting SQI. It also had a significant indirect positive effect on SQI by influencing inorganic nitrogen. Additionally, the increased organic matter led to a higher proportion of large aggregates, which significantly affected SQI indirectly. 【Conclusion】Legume (peanut) and root crop (sweet potato) rotations with wheat-maize rotations could significantly improve soil quality and enhance the soil nutrient supply capacity in the NCP.

Key words: North China Plain, diversified crop rotation, soil aggregate, soil quality index, soil nutrient distribution, wheat, maize

Fig. 1

Average daily, daily maximum, daily minimum temperature and daily rainfall from 2018 to 2022"

Fig. 2

Soil nutrient content in different crop rotation systems"

Fig. 3

Soil enzyme activity in different crop rotation systems"

Table 1

Stability characteristics of soil aggregates in different crop rotation systems"

土层
Soil layer (cm)
轮作模式
Crop rotation pattern
平均质量直径
Mean weight diameter
(MWD) (mm)
几何平均直径
Geometric mean diameter
(GMD) (mm)
>0.25 mm粒级团聚体质量百分数
Mass percentage of aggregates
>0.25 mm (R>0.25) (%)
0—10 WM-WM 1.108±0.001c 0.836±0.002c 85.670±0.317b
Psw-WM 1.168±0.011b 0.894±0.012b 91.237±0.351a
Pns-WM 1.202±0.015a 0.952±0.014a 86.732±0.247b
Ps-WM 1.077±0.008c 0.802±0.010d 76.080±0.984c
10—20 WM-WM 1.174±0.004b 0.905±0.004b 86.396±0.082a
Psw-WM 1.216±0.017ab 0.943±0.019ab 82.934±0.378b
Pns-WM 1.249±0.027a 1.009±0.035a 86.757±1.354a
Ps-WM 1.269±0.009a 0.991±0.012a 83.689±0.755b
20—30 WM-WM 1.249±0.005bc 0.982±0.006bc 83.151±0.379c
Psw-WM 1.282±0.006ab 1.011±0.007ab 86.197±0.398b
Pns-WM 1.306±0.021a 1.050±0.025a 88.757±0.849a
Ps-WM 1.237±0.008c 0.963±0.007c 83.689±0.501c
30—40 WM-WM 1.204±0.012c 0.931±0.016c 85.872±1.093b
Psw-WM 1.248±0.004b 0.980±0.004b 91.957±0.266a
Pns-WM 1.200±0.015c 0.934±0.021c 86.121±1.278b
Ps-WM 1.308±0.006a 1.027±0.007a 85.903±0.212b

Fig. 4

Soil aggregate nutrient content in different crop rotations systems"

Fig. 5

Soil quality index (a) for each crop rotations and responses of soil biochemical properties to different crop rotation systems (b)"

Fig. 6

Structural equation model of soil physicochemical properties and soil quality indexes"

[1]
D’ACUNTO L, ANDRADE J F, POGGIO S L, SEMMARTIN M. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agriculture, Ecosystems & Environment, 2018, 257: 159-164.
[2]
LOU S Y, HE J, LI H W, WANG Q J, LU C Y, LIU W Z, LIU P, ZHANG Z G, LI H. Current knowledge and future directions for improving subsoiling quality and reducing energy consumption in conservation fields. Agriculture, 2021, 11(7): 575.
[3]
李瑞平, 谢瑞芝, 罗洋, 隋鹏祥, 郑洪兵, 明博, 王浩, 刘武仁, 郑金玉, 李少昆. 典型黑土区不同保护性耕作方式对玉米生长发育及产量形成的影响. 中国生态农业学报(中英文), 2024, 32(1): 71-82.
LI R P, XIE R Z, LUO Y, SUI P X, ZHENG H B, MING B, WANG H, LIU W R, ZHENG J Y, LI S K. Effects of conservation tillage methods on maize growth and yields in a typical black soil region. Chinese Journal of Eco-Agriculture, 2024, 32(1): 71-82. (in Chinese)
[4]
李荣, 鄢慧芳, 张龙, 苗芳芳, 勉有明, 侯贤清. 不同耕作措施对宁南地区土壤物理性质及作物产量的影响. 中国农业科学, 2023, 56(18): 3543-3555. doi:10.3864/j.issn.0578-1752.2023.18.005.
LI R, YAN H F, ZHANG L, MIAO F F, MIAN Y M, HOU X Q. Effects of different tillage practices on soil physical properties and crop yield in the region of southern Ningxia. Scientia Agricultura Sinica, 2023, 56(18): 3543-3555. doi:10.3864/j.issn.0578-1752.2023.18.005. (in Chinese)
[5]
解占军, 韩瑛祚, 何志刚, 王秀娟. 秸秆还田条件下分层施肥对玉米产量及氮素利用的影响. 科学技术与工程, 2023, 23(9): 3680-3685.
XIE Z J, HAN Y Z, HE Z G, WANG X J. Effects of layered fertilization on maize yield and nitrogen utilization under straw returning conditions. Science Technology and Engineering, 2023, 23(9): 3680-3685. (in Chinese)
[6]
RENARD D, TILMAN D. National food production stabilized by crop diversity. Nature, 2019, 571: 257-260.
[7]
TIEMANN L K, GRANDY A S, ATKINSON E E, MARIN-SPIOTTA E, MCDANIEL M D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 2015, 18(8): 761-771.

doi: 10.1111/ele.12453 pmid: 26011743
[8]
宋王芳. 科尔沁沙地不同种植模式对土壤养分和生物特性的影响[D]. 阜新: 辽宁工程技术大学, 2020.
SONG W F. Effects of different planting patterns on soil nutrients and biological characteristics in horqin sandy land[D]. Fuxin: Liaoning Technical University, 2020. (in Chinese)
[9]
WANG L, ZHAO Y X, AL-KAISI M, YANG J, CHEN Y Q, SUI P. Effects of seven diversified crop rotations on selected soil health indicators and wheat productivity. Agronomy, 2020, 10(2): 235.
[10]
BOWLES T M, MOOSHAMMER M, SOCOLAR Y, CALDERÓN F, CAVIGELLI M A, CULMAN S W, DEEN W, DRURY C F, GARCIA Y GARCIA A, GAUDIN A C M, HARKCOM W S, LEHMAN R M, OSBORNE S L, ROBERTSON G P, SALERNO J, SCHMER M R, STROCK J, GRANDY A S. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth, 2020, 2(3): 284-293.
[11]
AMIN M N, HOSSAIN M S, LOBRY DE BRUYN L, WILSON B. A systematic review of soil carbon management in Australia and the need for a social-ecological systems framework. Science of the Total Environment, 2020, 719: 135182.
[12]
宋惠洁, 朱莉英, 杨延安, 胡丹丹, 胡惠文, 柳开楼. 土壤团聚体组分中碳钾分配对芋头-水稻轮作年限的响应. 土壤与作物, 2021, 10(4):404-411.
SONG H J, ZHU L Y, YANG Y A, HU D D, HU H W, LIU K L. Responses of carbon and potassium contents in soil aggregates to the duration of taro-rice rotation. Soils and Crops, 2021, 10(4): 404-411. (in Chinese)
[13]
ZHANG D B, YAO Z Y, CHEN J, YAO P W, ZHAO N, HE W X, LI Y Y, ZHANG S Q, ZHAI B N, WANG Z H, HUANG D L, CAO W D, GAO Y J. Improving soil aggregation, aggregate-associated C and N, and enzyme activities by green manure crops in the Loess Plateau of China. European Journal of Soil Science, 2019, 70(6): 1267-1279.
[14]
LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2(8): 17105.

doi: 10.1038/nmicrobiol.2017.105 pmid: 28741607
[15]
ANDREWS S S, CARROLL C R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications, 2001, 11(6): 1573.
[16]
郭伟, 李丹丹, 徐基胜, 周云鹏, 王青霞, 周谈坛, 赵炳梓. 秸秆与有机无机肥配施对不同质地潮土土壤质量和小麦产量的影响. 土壤学报, 2024, 61(5): 1360-1373.
GUO W, LI D D, XU J S, ZHOU Y P, ZHOU Y P, WANG Q X, ZHOU T T, ZHAO B Z. Effects of application of straw and organic-inorganic fertilizers on soil quality and wheat yield in different texture fluvo-aquic soils. Acta Pedologica Sinica, 2024, 61(5): 1360-1373. (in Chinese)
[17]
马群, 刘铭, 周玉玲, 王渝庆, 叶成渝, 杨平平, 李绍兴, 王龙昌. 生物炭与有机无机肥配施对土壤质量的影响. 西南大学学报(自然科学版), 2024, 46(7): 115-126.
MA Q, LIU M, ZHOU Y L, WANG Y Q, YE C Y, YANG P P, LI S X, WANG L C. The effect of biochar combined with organic and inorganic fertilizers on soil biological characteristics and quality. Journal of Southwest University (Natural Science), 2024, 46(7): 115-126. (in Chinese)
[18]
彭丹丹, 徐开未, 刘圆圆, 裴丽珍, 周元, 陈远学. 有机物料等氮量还田对紫色土土壤质量的影响. 农业资源与环境学报, 2024. https://doi.org/10.13254/j.jare.2024.0017.
PENG D D, XU K W, LIU Y Y, PEI L Z, ZHOU Y, CHEN Y X. Effects of organic material returned on quality of purple soil under equal nitrogen rate. Journal of Agricultural Resources and Environment, 2024. https://doi.org/10.13254/j.jare.2024.0017. (in Chinese)
[19]
YAN Z J, ZHOU J, LIU C Y, JIA R, MGANGA K Z, YANG L, YANG Y D, PEIXOTO L, ZANG H D, ZENG Z H. Legume-based crop diversification reinforces soil health and carbon storage driven by microbial biomass and aggregates. Soil and Tillage Research, 2023, 234: 105848.
[20]
DORODNIKOV M, BLAGODATSKAYA E, BLAGODATSKY S, MARHAN S, FANGMEIER A, KUZYAKOV Y. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Global Change Biology, 2009, 15(6): 1603-1614.
[21]
SCHUTTER M E, DICK R P. Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Science Society of America Journal, 2002, 66(1): 142.
[22]
鲁如坤. 土壤农业化学分析. 北京: 中国农业科技出版社, 1999: 166-187.
LU R K. Soil and agricultural chemistry analysis. Beijing: China Agricultural Science and Technology Press, 1999: 166-187. (in Chinese)
[23]
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: Agriculture Press, 1986. (in Chinese)
[24]
DORAN J W, PARKIN T B. Defining and assessing soil quality. Defining Soil Quality for a Sustainable Environment. Madison, WI, USA: Soil Science Society of America and American Society of Agronomy, 2015: 1-21.
[25]
KUZYAKOV Y, GUNINA A, ZAMANIAN K, TIAN J, LUO Y, XU X L, YUDINA A, APONTE H, ALHARBI H, OVSEPYAN L, KURGANOVA I, GE T D, GUILLAUME T. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 282.

doi: 10.15302/J-FASE-2020338
[26]
LATAN H, HAIR J F. NOONAN R. Partial least squares path modeling: Basic concepts, methodological issues and applications. 2017.
[27]
LING N, WANG T T, KUZYAKOV Y. Rhizosphere bacteriome structure and functions. Nature Communications, 2022, 13: 836.

doi: 10.1038/s41467-022-28448-9 pmid: 35149704
[28]
李丹, 李小霞, 李万星, 曹晋军, 靳鲲鹏, 韩文清, 胡丹珠, 刘鑫, 田岗, 黄学芳, 刘永忠. 谷子不同轮作模式对土壤理化性质及细菌群落的影响. 江苏农业学报, 2022, 38(6): 1500-1509.
LI D, LI X X, LI W X, CAO J J, JIN K P, HAN W Q, HU D Z, LIU X, TIAN G, HUANG X F, LIU Y Z. Effects of crops-millet rotations on soil physicochemical properties and bacterial community. Jiangsu Journal of Agricultural Sciences, 2022, 38(6): 1500-1509. (in Chinese)
[29]
杨德光, 吴玥, 宋秀丽, 陶波, 谷景龙, 董璐铭, 季生栋, 韩业辉. 轮作对土壤肥力及玉米生长发育的影响. 玉米科学, 2019, 27(4): 127-133.
YANG D G, WU Y, SONG X L, TAO B, GU J L, DONG L M, JI S D, HAN Y H. Effects of crop rotation on soil fertility and growth and development of maize. Journal of Maize Sciences, 2019, 27(4): 127-133. (in Chinese)
[30]
决超. 甘薯不同轮作模式对土壤生物学特性及理化性质的影响. 江苏农业科学, 2022, 50(3): 116-120.
JUE C. Effects of different rotation patterns of sweet potato on soil biological and physicochemical properties. Jiangsu Agricultural Sciences, 2022, 50(3):116-120. (in Chinese)
[31]
张艳, 郭书亚, 尚赏, 卢广远, 刘亚军. 甘薯/玉米不同间作方式对土壤养分、酶活性及作物产量的影响. 山西农业科学, 2020, 48(8): 1234-1238.
ZHANG Y, GUO S Y, SHANG S, LU G Y, LIU Y J. Effects of different intercropping methods of sweet potato/corn on soil nutrients, enzyme activity and crop yield. Journal of Shanxi Agricultural Sciences, 2020, 48(8): 1234-1238. (in Chinese)
[32]
蔡艳, 郝明德, 臧逸飞, 何晓雁, 张丽琼. 不同轮作制下长期施肥旱地土壤微生物多样性特征. 核农学报, 2015, 29(2): 344-350.

doi: 10.11869/j.issn.100-8551.2015.02.0344
CAI Y, HAO M D, ZANG Y F, HE X Y, ZHANG L Q. Effect of long-term fertilization on microbial diversity of black loessial soil based on 454 sequencing technology. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 344-350. (in Chinese)

doi: 10.11869/j.issn.100-8551.2015.02.0344
[33]
李昊烊. 华北平原南部两熟区不同种植模式周年养分利用效率及土壤肥力质量评价[D]. 新乡: 河南师范大学, 2018.
LI H Y. Evaluation of nutrient utilization efficiency and soil fertility quality in different planting patterns of double-cropping region in southern part of North China plain[D]. Xinxiang: He'nan Normal University, 2018.  (in Chinese)
[34]
杨继伟, 汤广民, 李如忠, 袁先江, 袁宏伟, 蒋尚明. 受淹农田土壤-上覆水氮磷迁移特征模拟研究. 灌溉排水学报, 2018, 37(12): 71-77.
YANG J W, TANG G M, LI R Z, YUAN X J, YUAN H W, JIANG S M. Loss of nitrogen and phosphorus from soil and surface water in flooded cropland. Journal of Irrigation and Drainage, 2018, 37(12): 71-77. (in Chinese)
[35]
李洋, 石柯, 朱长伟, 姜桂英, 罗澜, 孟威威, 申凤敏, 刘芳, 魏芳芳, 刘世亮. 不同轮作模式对黄淮平原潮土区土壤养分及作物产量的影响. 水土保持学报, 2022, 36(2): 312-321.
LI Y, SHI K, ZHU C W, JIANG G Y, LUO L, MENG W W, SHEN F M, LIU F, WEI F F, LIU S L. Effect of different crop rotations on soil nutrients and crop yield in fluvo-aquic soil in Huang Huai Plain. Journal of Soil and Water Conservation, 2022, 36(2): 312-321. (in Chinese)
[36]
BANSAL S, CHAKRABORTY P, KUMAR S. Crop-livestock integration enhanced soil aggregate-associated carbon and nitrogen, and phospholipid fatty acid. Scientific Reports, 2022, 12: 2781.

doi: 10.1038/s41598-022-06560-6 pmid: 35177715
[37]
杨继芬, 李永梅, 李春培, 王璐, 芦美, 范茂攀, 赵吉霞. 不同种植模式对坡耕地红壤团聚体中酶活性及养分含量的影响. 土壤, 2023, 55 (4): 787-794.
YANG J F, LI Y M, LI C P, WANG L, LU M, FAN M P, ZHAO J X. Effects of different planting patterns on enzyme activities and nutrient contents in red soil aggregates in sloping farmland. Soils, 2023, 55 (4): 787-794. (in Chinese)
[38]
牛倩云, 韩彦莎, 徐丽霞, 张艾英, 仪慧兰, 郭二虎. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响. 农业环境科学学报, 2018, 37(12): 2802-2809.
NIU Q Y, HAN Y S, XU L X, ZHANG A Y, YI H L, GUO E H. Effects of crop rotation on soil physicochemical properties and bacterial community of foxtail millet rhizosphere soil. Journal of Agro-Environment Science, 2018, 37(12): 2802-2809. (in Chinese)
[39]
李扬, 孙洪仁, 沈月, 邵光武, 曹影, 刘琳, 吴雅娜. 紫花苜蓿根系生物量垂直分布规律. 草地学报, 2012, 20(5): 793-799.

doi: 10.11733/j.issn.1007-0435.2012.05.001
LI Y, SUN H R, SHEN Y, SHAO G W, CAO Y, LIU L, WU Y N. The vertical distribution pattern of alfalfa’s (Medicago sativa L.) root biomass. Acta Agrestia Sinica, 2012, 20(5): 793-799. (in Chinese)
[40]
孙洪仁, 武瑞鑫, 李品红, 邵帅, 戚琳璐, 韩建国. 紫花苜蓿根系入土深度. 草地学报, 2008, 16(3): 307-312.

doi: 10.11733/j.issn.1007-0435.2008.03.019
SUN H R, WU R X, LI P H, SHAO S, QI L L, HAN J G. Rooting depth of alfalfa. Acta Agrestia Sinica, 2008, 16(3): 307-312. (in Chinese)
[41]
杨晨曦. 科尔沁沙地不同种植模式下土壤养分及微生物的季节变化[D]. 阜新: 辽宁工程技术大学, 2021.
YANG C X. Seasonal changes of soil nutrients and microorganisms under different planting patterns in Horqin sandy land[D]. Fuxin: Liaoning Technical University, 2021. (in Chinese)
[42]
孙倩. 轮作模式对谷茬地作物根际土壤特性及微生物群落多样性的影响[D]. 银川: 宁夏大学, 2019.
SUN Q. Effects of rotation pattern on rhizosphere soil characteristics and microbial community diversity of crops in stubble field[D]. Yinchuan: Ningxia University, 2019. (in Chinese)
[43]
ZUBER S M, BEHNKE G D, NAFZIGER E D, VILLAMIL M B. Carbon and nitrogen content of soil organic matter and microbial biomass under long-term crop rotation and tillage in Illinois, USA. Agriculture, 2018, 8(3): 37.
[44]
ZHAO J, YANG Y D, ZHANG K, JEONG J, ZENG Z H, ZANG H D. Does crop rotation yield more in China? A meta-analysis. Field Crops Research, 2020, 245: 107659.
[45]
BRUNS M A, COURADEAU E. Sustainable soil health. Plant Biotechnology. Cham: Springer International Publishing, 2021: 181-202.
[46]
ASCHI A, AUBERT M, RIAH-ANGLET W, NÉLIEU S, DUBOIS C, AKPA-VINCESLAS M, TRINSOUTROT-GATTIN I. Introduction of Faba bean in crop rotation: Impacts on soil chemical and biological characteristics. Applied Soil Ecology, 2017, 120: 219-228.
[47]
SAWARGAONKAR G L, PATIL M D, WANI S P, PAVANI E, REDDY B V S R, MARIMUTHU S. Nitrogen response and water use efficiency of sweet Sorghum cultivars. Field Crops Research, 2013, 149: 245-251.
[1] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
[2] SUN RuiQing, DANG HaiYan, SHE WenTing, WANG XingShu, CHU HongXin, WANG Tao, DING YuLan, LUO YiNuo, XU JunFeng, LI XiaoHan, WANG ZhaoHui. Yield Components and Soil Factors Affecting Zinc Concentration in Wheat Grain and Flour in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2025, 58(2): 291-306.
[3] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[4] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[5] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[6] LÜ JinLing, YOU Ke, WANG XiaoFei, XIAO Qiang, LI WenFeng, MA Jin, YANG Qing, ZHANG JinPing, KONG HaiJiang, CHANG YunHua. Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 127-140.
[7] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[8] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[9] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[10] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[11] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[12] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[13] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[14] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[15] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!