Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 75-90.doi: 10.3864/j.issn.0578-1752.2025.01.006

• PLANT PROTECTION • Previous Articles     Next Articles

Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum

CAO YanYong1(), CHENG ZeQiang1(), MA Juan1, YANG WenBo1, ZHU WeiHong1, SUN XinYan1, LI HuiMin1, XIA LaiKun1,*(), DUAN CanXing2,*()   

  1. 1 Institute of Cereal Crops, Henan Academy of Agricultural Sciences/The Shennong Laboratory, Zhengzhou 450002
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081
  • Received:2024-07-28 Accepted:2024-09-24 Online:2025-01-01 Published:2025-01-07
  • Contact: XIA LaiKun, DUAN CanXing

Abstract:

【Objective】Stalk rot is a prevalent disease of maize (Zea mays) that severely affects maize yield and quality worldwide. The diseases are caused by several types of fungi and bacteria that are part of the complex of microorganisms. Among which, the ascomycete fungus Fusarium proliferatum has become one of the most aggressive causal agents of maize diseases in China in recent years. The study aims to provide a comprehensive analysis of multi-omics of maize stalks following F. proliferatum inoculation and valuable insights into the molecular basis of the response, including functional annotation and enrichment analyses of the major pathways enriched for differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) of maize conditioning F. proliferatum infection, and to lay theoretical foundation for maize breeding and disease management.【Method】Maize inbred lines ZC17 (ZhengC17, resistant) and CH72 (Chang72, susceptible), with different levels of resistance to F. proliferatum were used for sample collection. Seedlings at the nine-leaf stage with uniform performance were selected for artificial inoculation. Maize plants were inoculated by punching a hole in the stem at the second or third internode above the soil line using a sterile micropipette tip, followed by injection of 50 μL of freshly prepared F. proliferatum inoculum. A similar number of plants were inoculated with PDB as a mock treatment. The wounds were sealed with vaseline after inoculation. The upper and lower stem segments immediately adjacent to the inoculation segments were sampled at 7 dpi (days post inoculation), all individual samples were used for further transcriptome and nontargeted-metabolomics analysis. The inoculated internodes of the individual plants were split and symptoms were observed for evaluating of SRSA (stalk rot score on average) and DSI (disease severity index). Multiple bioinformatics tools were used to conduct in-depth analysis of the transcriptome sequencing data and metabolomics data, and the DEGs were verified by real-time fluorescence quantitative PCR (RT-qPCR).【Result】Phenotypic and physiological characteristics indicated that the inoculated group of samples from the resistant inbred line ZC17 showed significantly lower lesion areas and symptoms than those of the sensitive inbred line CH72 after inoculation with F. proliferatum. The SRSA and DSI of the ZC17 and CH72 stalks were consistent with the symptom phenotypes: the susceptible inbred CH72 had approximately 2.48-fold more SRSAs than the resistant inbred ZC17 line, and its DSI increased by 35.36% compared to that of ZC17. The results of the principal component analysis (PCA) showed a high reproducibility of the samples within the group. In PC1, ZC17 and CH72 were separated from each other. In PC2, FP group and MK group were separated from each other. The DEGs in the two comparison pairs (ZC17_FP vs. ZC17_MK, CH72_FP vs. CH72_MK) were analyzed. More DEGs were found in CH72 than those of ZC17 post inoculation, whereas nearly 50% of the DEGs share the same trend of expression between the two comparison pairs. Functional annotation and enrichment analysis found that DEGs and DEMs were enriched in pathways such as biosynthesis of plant secondary metabolites, phenylalanine metabolism, biosynthesis of plant hormones, and plant-pathogen interactions. Integrated analysis of transcriptomics and metabolomics data revealed that phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism were significantly enriched in both the transcriptomic and metabolomic data for CH72 and ZC17. This result suggested that these pathways play a key role in the maize response to F. proliferatum. In addition, transcriptional factors of bHLH, MYB, NAC, and WRKY families were significantly activated after fungal inoculation, demonstrating the important role of transcription factors in the maize response to F. proliferatum infestation. To further confirm the reliability of the sequencing data, 11 genes were randomly selected for qPCR validation, which showed that the trends of the RNA-Seq and qPCR results were consistent in both CH72 and ZC17, Spearman rank correlation analysis also showed high concordance between the RNA-Seq and qPCR results (r=0.75, P=7.5e-05).【Conclusion】Phenylalanine metabolism-related pathways are crucial in maize response to F. proliferatum stalk rot. Key enzymes such as C4H, PAL, ADT, GOT and significantly up-regulated metabolites such as 2-coumaric acid, 3-hydroxycinnamic acid, indole, phenylalanine, tryptophan and tyrosine play an important role in plant disease resistance. The potential disease resistance-related transcription factors, genes and metabolites excavated in this study can provide an important basis for further analysis of the molecular response mechanism of maize to F. proliferatum stalk rot.

Key words: transcriptome, metabolome, maize stalk rot, Fusarium proliferatum, phenylalanine metabolism

Table 1

Genes and primer sequences for RT-qPCR verification"

基因
Gene
引物Primer 序列
Sequence (5′ to 3′)
Zm00001d028815 8815-1F GACGCCTACAACTAAACC
8815-1R ACAACACAAGGACAGCAC
Zm00001d028816 8816-1F GATTTCTTCCTTGCCTTTT
8816-1R ACACACCCACACACATTTG
Zm00001d028313 8313-2F AAAGGAGGAAGGAGACCA
8313-2R CCCGCCATAGAAGATTGT
Zm00001d014250 4250F AAGTGTCGCTGCAGAGGTTC
4250R TCCTTTAAGGCCGTCGCTTG
Zm00001d022139 2139F CCGACAAGGCAAAGGATCTG
2139R GGCTCTCAGGCTCCTTCTTG
Zm00001d043528 3528-1F AGCTTGCCCCTTTCTCAAC
3528-1R ACCAGGAACACCGTCATTT
Zm00001d017121 7121F CCAATGCTAGCTGCACAACC
7121R AACAGCCTTAGCAGCTCCAG
Zm00001d004366 4366F ACTCATTCCGCGACATCGAA
4366R GCGGTCATCGTCAAGGTACA
Zm00001d043144 3144F ACGACGAGTTCGTCAAGGTC
3144R TGCACCAGCATGTACTGGAC
Zm00001d021168 1168F CCAGGTTTCCACCGTGCTTC
1168R AGGACACGTACAGGACGGAC
Zm00001d009028 9028F TTGAACTGCGCCGCCTTG
9028R AGGAAACCCACAGACTTGGC
GAPDH GAPDH1F CCATCACTGCCACACAGAAAAC
GAPDH1R AGGAACACGGAAGGACATACCAG

Fig. 1

Phenotypes and disease symptoms of different resistant maize inbred lines after inoculation"

Table 2

Overview of transcriptome sequencing data"

样品
Sample
原始序列数
Raw reads
原始碱基数
Raw bases
有效序列数
Valid reads
有效碱基数
Valid bases
有效比率
Valid ratio (%)
Q20 (%) Q30 (%) 基因组比对序列数Mapped reads
ZC17_MK1 48487174 7.27G 46461886 6.97G 95.82 99.94 97.59 41846591 (90.07%)
ZC17_MK2 38471678 5.77G 37250738 5.59G 96.83 99.95 98.99 33782858 (90.69%)
ZC17_MK3 42311182 6.35G 40990978 6.15G 96.88 99.95 98.79 37004587 (90.27%)
ZC17_FP1 44341730 6.65G 43314250 6.50G 97.68 99.95 98.69 39449341 (91.08%)
ZC17_FP2 44878826 6.73G 43756214 6.56G 97.50 99.95 98.70 39796076 (90.95%)
ZC17_FP3 44490646 6.67G 43362776 6.50G 97.46 99.95 98.99 39559652 (91.23%)
CH72_MK1 48737466 7.31G 47558210 7.13G 97.58 99.95 98.37 42325490 (89.00%)
CH72_MK2 39150064 5.87G 38093258 5.71G 97.30 99.96 99.02 34198799 (89.78%)
CH72_MK3 45219372 6.78G 44260068 6.64G 97.88 99.95 98.68 39511099 (89.27%)
CH72_FP1 47658538 7.15G 46484104 6.97G 97.54 99.96 98.56 41481231 (89.24%)
CH72_FP2 43802340 6.57G 42961890 6.44G 98.08 99.96 99.17 38760342 (90.22%)
CH72_FP3 41930108 6.29G 40712488 6.11G 97.10 99.96 99.13 34565595 (84.90%)

Fig. 2

PCA analysis and DEG screening of samples from different resistant inbred lines"

Fig. 3

Functional and pathway enrichment analysis of DEGs in maize in response to F. proliferatum infestation"

Fig. 4

Heatmap and transcription factor identification of DEGs in major disease resistance pathways in plants"

Fig. 5

PCA analysis of metabolome samples and metabolite identification"

Table 3

The 10 metabolites with the largest differences in up- and down-regulation in different comparison groups"

比较组
Comparison
代谢物
Metabolite
Log2FC
CH72
(FP/MK)
蜀葵苷Scorzoside 9.201
N-(p-羟苯基)乙基对羟基肉桂酰胺N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide 7.304
伏马菌素B1 Fumonisin B1 6.862
对香豆酸乙酯Ethyl p-coumarate 6.373
L-苯丙氨酸L-Phenylalanine 5.878
肉桂酸Cinnamic acid 5.759
苯丙氨酸Phenylalanine 5.666
N-(1-脱氧-1-果糖基)酪氨酸N-(1-Deoxy-1-fructosyl)tyrosine 5.439
吲哚-3-乙酰胺Indole-3-acetamide 5.205
溶血磷脂酰肌醇15:0 LysoPI 15:0 4.876
1-硬脂酰-2-羟基-sn-甘油-3-磷酸胆碱1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine -4.631
氧化型谷胱甘肽Glutathione, oxidized -3.808
L-谷胱甘肽(氧化型)L-Glutathione (oxidized form) -3.355
2-(2-噻吩基)呋喃2-(2-Thienyl)furan -3.311
翠雀素-3-O-(6''-O-α-鼠李吡喃糖基-β-葡萄糖苷) Delphinidin-3-O-(6''-O-alpha-rhamnopyranosyl-beta-glucopyranoside) -2.606
溶血磷脂酰甘油16:0 LysoPG 16:0 -2.547
溶血磷脂酰胆碱18:1 LysoPC 18:1 -2.251
谷氨酰胺-亮氨酸Gln-Leu -2.060
缬氨酸-苯丙氨酸Val-Phe -2.011
酪氨酸-亮氨酸Tyr-Leu -1.965
ZC17
(FP/MK)
阿洛糖Allose 6.719
乙酸Acetic acid 6.535
广木香内酯Costunolide 5.894
D-1,5-脱水果糖D-1,5-Anhydrofructose 5.306
5-吡哆醇内酯5-Pyridoxolactone 5.276
伏马菌素B1 Fumonisin B1 5.182
甘油1-十六酸酯Glycerol 1-hexadecanoate 4.816
溶血磷脂酰肌醇15:0 LysoPI 15:0 4.631
棕矢车菊素Jaceidin 4.175
松油酸乙酯Pinolenic acid ethyl ester 4.070
溶血磷脂酰乙醇胺18:3 LysoPE 18:3 -2.731
2,4-二羟基苯甲酸2,4-Dihydroxybenzoic acid -2.772
缬氨酸-亮氨酸Val-Leu -2.899
前列腺素A1 Prostaglandin A1 -3.159
9-氢过氧基-10E,12Z,15Z-十八碳三烯酸9-Hydroperoxy-10E,12Z,15Z-octadecatrienoic acid -3.160
穆坪马兜铃酰胺Moupinamide -3.722
(9S,10E,12S,13S)- 9,12,13-三羟基-10-十八碳烯酸(9S,10E,12S,13S)-9,12,13-Trihydroxy-10-octadecenoic acid -3.923
溶血磷脂酰胆碱18:3 LysoPC 18:3 -3.984
(9ξ,10ξ,12ξ)- 9,10-二羟基-12-十八碳烯酸(9xi,10xi,12xi)-9,10-Dihydroxy-12-octadecenoic acid -4.171
去甲异波尔定Norisoboldine -4.280

Fig. 6

Enrichment analysis of KEGG pathway for DEMs"

Fig. 7

Integration analysis of DEGs and DEMs"

Fig. 8

Analysis and qPCR validation of key genes and metabolites in the phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism pathways"

[1]
李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001.
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. doi: 10.3864/j.issn.0578-1752.2017.11.001. (in Chinese)
[2]
YANG Q, YIN G, GUO Y, ZHANG D, CHEN S, XU M. A major QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics, 2010, 121(4): 673-687.

doi: 10.1007/s00122-010-1339-0 pmid: 20401458
[3]
段灿星, 曹言勇, 董怀玉, 夏玉生, 李红, 胡清玉, 杨知还, 王晓鸣. 玉米种质资源抗腐霉茎腐病和镰孢茎腐病精准鉴定. 中国农业科学, 2022, 55(2): 265-279. doi: 10.3864/j.issn.0578-1752.2022.02.003.
DUAN C X, CAO Y Y, DONG H Y, XIA Y S, LI H, HU Q Y, YANG Z H, WANG X M. Precise characterization of maize germplasm for resistance to Pythium stalk rot and Gibberella stalk rot. Scientia Agricultura Sinica, 2022, 55(2): 265-279. doi: 10.3864/j.issn.0578-1752.2022.02.003. (in Chinese)
[4]
COOK R J. The incidence of stalk rot (Fusarium spp.) on maize hybrids and its effect on yield of maize in Britain. Annals of Applied Biology, 1978, 88(1): 23-30.
[5]
GAI X, DONG H, WANG S, LIU B, ZHANG Z, LI X, GAO Z. Infection cycle of maize stalk rot and ear rot caused by Fusarium verticillioides. PLoS ONE, 2018, 13(7): e0201588.
[6]
刘树森, 马红霞, 郭宁, 石洁, 张海剑, 孙华, 金戈. 黄淮海夏玉米主产区茎腐病主要病原菌及优势种分析. 中国农业科学, 2019, 52(2): 262-272. doi: 10.3864/j.issn.0578-1752.2019.02.006.
LIU S S, MA H X, GUO N, SHI J, ZHANG H J, SUN H, JIN G. Analysis of main pathogens and dominant species of maize stalk rot in the main summer maize producing areas of Huang-Huai-Hai. Scientia Agricultura Sinica, 2019, 52(2): 262-272. doi: 10.3864/j.issn.0578-1752.2019.02.006. (in Chinese)
[7]
SHU X M, LIVINGSTON D P, WOLOSHUK C P, PAYNE G A. Comparative histological and transcriptional analysis of maize kernels infected with Aspergillus flavus and Fusarium verticillioides. Frontiers in Plant Science, 2017, 8: 2075.
[8]
范志业, 崔小伟, 施艳, 陈琦, 刘迪, 侯艳红, 李世民, 闫海霞, 袁刘正, 孙虎. 河南省玉米茎基腐病主要病原菌鉴定及主栽玉米品种的抗性分析. 河南农业科学, 2014, 43(12): 87-90.
FAN Z Y, CUI X W, SHI Y, CHEN Q, LIU D, HOU Y H, LI S M, YAN H X, YUAN L Z, SUN H. Identification of pathogens causing corn stalk rot and resistance test of main cultivars in Henan Province. Journal of Henan Agricultural Sciences, 2014, 43(12): 87-90. (in Chinese)
[9]
JONES J D G, DANGL J L. The plant immune system. Nature, 2006, 444(7117): 323-329.
[10]
PECHANOVA O, PECHAN T. Maize-pathogen interactions: An ongoing combat from a proteomics perspective. International Journal of Molecular Sciences, 2015, 16(12): 28429-28448.

doi: 10.3390/ijms161226106 pmid: 26633370
[11]
PIETERSE C M, VAN DER DOES D, ZAMIOUDIS C, LEON- REYES A, VAN WEES S C. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 2012, 28: 489-521.

doi: 10.1146/annurev-cellbio-092910-154055 pmid: 22559264
[12]
LANUBILE A, MASCHIETTO V, BORRELLI V M, STAGNATI L, LOGRIECO A F, MAROCCO A. Molecular basis of resistance to Fusarium ear rot in maize. Frontiers in Plant Science, 2017, 8: 1774.

doi: 10.3389/fpls.2017.01774 pmid: 29075283
[13]
MENDGEN K, HAHN M, DEISING H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annual Review of Phytopathology, 1996, 34: 367-386.

pmid: 15012548
[14]
AMTHOR J S. Efficiency of lignin biosynthesis: A quantitative analysis. Annals of Botany, 2003, 91(6): 673-695.

doi: 10.1093/aob/mcg073 pmid: 12714366
[15]
SCHUSTER B, RETEY J. The mechanism of action of phenylalanine ammonia-lyase: The role of prosthetic dehydroalanine. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(18): 8433-8437.
[16]
CHEN J Y, WEN P F, KONG W F, PAN Q H, WAN S B, HUANG W D. Changes and subcellular localizations of the enzymes involved in phenylpropanoid metabolism during grape berry development. Journal of Plant Physiology, 2006, 163(2): 115-127.
[17]
MAUCH-MANI B, SLUSARENKO A J. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell, 1996, 8(2): 203-212.
[18]
WANG F, XIAO J, ZHANG Y, LI R, LIU L, DENG J. Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biology and Technology, 2021, 174: 111456.
[19]
NICHOLSON R L, HAMMERSCHMIDT R. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 1992, 30: 369-389.
[20]
BERENS M L, BERRY H M, MINE A, ARGUESO C T, TSUDA K. Evolution of hormone signaling networks in plant defense. Annual Review of Phytopathology, 2017, 55: 401-425.

doi: 10.1146/annurev-phyto-080516-035544 pmid: 28645231
[21]
LICAUSI F, OHME-TAKAGI M, PERATA P. APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytologist, 2013, 199(3): 639-649.

doi: 10.1111/nph.12291 pmid: 24010138
[22]
LORENZO O, PIQUERAS R, SANCHEZ-SERRANO J J, SOLANO R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 2003, 15(1): 165-178.
[23]
XU X, CHEN C, FAN B, CHEN Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. The Plant Cell, 2006, 18(5): 1310-1326.
[24]
BU Q, JIANG H, LI C B, ZHAI Q, ZHANG J, WU X, SUN J, XIE Q, LI C. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research, 2008, 18(7): 756-767.
[25]
WU Y, DENG Z, LAI J, ZHANG Y, YANG C, YIN B, ZHAO Q, ZHANG L, LI Y, YANG C, XIE Q. Dual function of Arabidopsis ATAF1in abiotic and biotic stress responses. Cell Research, 2009, 19(11): 1279-1290.
[26]
刘春来. 中国玉米茎腐病研究进展. 中国农学通报, 2017, 33(30): 130-134.

doi: 10.11924/j.issn.1000-6850.casb16120102
LIU C L. Research process of maize stem rot in China. Chinese Agricultural Science Bulletin, 2017, 33(30): 130-134. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb16120102
[27]
HOU M W, CAO Y Y, ZHANG X R, ZHANG S L, JIA T J, YANG J W, HAN S B, WANG L F, LI J J, WANG H, ZHANG L L, WU X L, DUAN C X, LI H Y. Genome-wide association study of maize resistance to Pythium aristosporum stalk rot. Frontiers in Plant Science, 2023, 14: 1239635.
[28]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
[29]
LYU F Y, HAN F R, GE C L, MAO W K, CHEN L, HU H P, CHEN G G, LANG Q L, FANG C. OmicStudio: A composable bioinformatics cloud platform with real-time feedback that can generate high-quality graphs for publication. iMeta, 2023, 2: e85.
[30]
DENG Y, LU S. Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences, 2017, 36(4): 257-290.
[31]
CHENG Q, LI N H, DONG L D, ZHANG D Y, FAN S J, JIANG L Y, WANG X, XU P F, ZHANG S Z. Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Frontiers in Plant Science, 2015, 6: 1024.
[32]
MIERZIAK J, KOSTYN K, KULMA A. Flavonoids as important molecules of plant interactions with the environment. Molecules, 2014, 19(10): 16240-16265.

doi: 10.3390/molecules191016240 pmid: 25310150
[33]
WALTER S, NICHOLSON P, DOOHAN F M. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytologist, 2010, 185(1): 54-66.

doi: 10.1111/j.1469-8137.2009.03041.x pmid: 19807873
[34]
MAEDA H, DUDAREVA N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 2012, 63: 73-105.

doi: 10.1146/annurev-arplant-042811-105439 pmid: 22554242
[35]
SUGUIYAMA V F, SILVA E A, MEIRELLES S T, CENTENO D C, BRAGA M R. Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time- dependent responses during desiccation and recovering. Frontiers in Plant Science, 2014, 5: 96.
[36]
WANG Y N, DANG F F, LIU Z Q, WANG X, EULGEM T, LAI Y, YU L, SHE J J, SHI Y L, LIN J H, CHEN C C, GUAN D Y, QIU A L, HE S L. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Molecular Plant Pathology, 2013, 14(2): 131-144.
[37]
DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15(10): 573-581.
[38]
CAO H, ZHANG K, LI W, PANG X, LIU P, SI H, ZANG J, XING J, DONG J. ZmMYC7 directly regulates ZmERF147to increase maize resistance to Fusarium graminearum. The Crop Journal, 2023, 11(1): 79-88.
[39]
LI W T, ZHU Z W, CHERN M, YIN J J, YANG C, RAN L, CHENG M P, HE M, WANG K, WANG J, et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170(1): 114-126.

doi: S0092-8674(17)30649-9 pmid: 28666113
[40]
PURANIK S, SAHU P P, SRIVASTAVA P S, PRASAD M. NAC proteins: Regulation and role in stress tolerance. Trends in Plant Science, 2012, 17(6): 369-381.

doi: 10.1016/j.tplants.2012.02.004 pmid: 22445067
[41]
LIN R, ZHAO W, MENG X, WANG M, PENG Y. Rice gene OsNAC19encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Science, 2007, 172(1): 120-130.
[42]
XIANG Y, BIAN X L, WEI T H, YAN J W, SUN X J, HAN T, DONG B C, ZHANG G F, LI J, ZHANG A Y. ZmMPK5 phosphorylates ZmNAC49to enhance oxidative stress tolerance in maize. New Phytologist, 2021, 232(6): 2400-2417.
[43]
JAVED T, GAO S J. WRKY transcription factors in plant defense. Trends in Genetics, 2023, 39(10): 787-801.
[44]
CAI R H, DAI W, ZHANG C S, WANG Y, WU M, ZHAO Y, MA Q, XIANG Y, CHENG B J. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta, 2017, 246(6): 1215-1231.
[45]
PARISH F, WILLIAMS W P, WINDHAM G L, SHAN X. Differential expression of signaling pathway genes associated with aflatoxin reduction quantitative trait loci in maize (Zea mays L.). Frontiers in Microbiology, 2019, 10: 2683.
[46]
BAI H, SI H L, ZANG J P, PANG X, YU L, CAO H Z, XING J H, ZHANG K, DONG J G. Comparative proteomic analysis of the defense response to Gibberella stalk rot in maize and reveals that ZmWRKY83is involved in plant disease resistance. Frontiers in Plant Science, 2021, 12: 694973.
[47]
MILLER J C, CHEZEM W R, CLAY N K. Ternary WD40 repeat-containing protein complexes: Evolution, composition and roles in plant immunity. Frontiers in Plant Science, 2016, 6: 1108.
[1] PAN Yuan, WANG De, LIU Nan, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Evaluation of the Effectiveness of Two High-Throughput Sequencing Techniques in Identifying Apple Viruses and Identification of Two Novel Viruses [J]. Scientia Agricultura Sinica, 2025, 58(2): 266-280.
[2] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[3] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[4] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[5] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[6] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[7] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
[8] CHEN FeiEr, ZHANG ZhiPeng, JIANG QingXue, MA Lin, WANG XueMin. Cloning and Biological Function Verification of Alfalfa MsSPL17 [J]. Scientia Agricultura Sinica, 2024, 57(17): 3335-3349.
[9] LIU Tong, WANG ZhiRong, LI Wei, LIU Yang, WANG XiangRu, LAI DiLi, HE YuQi, ZHANG KaiXuan, ZHAO ZhenJun, ZHOU MeiLiang. Function Analysis of bHLH93 Transcription Factor in Tartary Buckwheat in Response to Aluminum Stress [J]. Scientia Agricultura Sinica, 2024, 57(16): 3127-3141.
[10] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[11] XU MingRui, WANG XiaoJuan, YANG YaLi, MA YueFei, LIU WanMao, SUN Ying. Transcriptomics-Based Analysis of Pepper Responses to Phosphorus Nutritional Stress [J]. Scientia Agricultura Sinica, 2024, 57(14): 2827-2846.
[12] GUI CuiLin, MA Liang, WANG YinYing, XIE FuGui, ZHAO CaiHong, WANG WenMiao, LI Xin, WANG Qing, GAO XiQuan. Identification of Resistant Germplasms and Mining of Candidate Genes Associated with Resistance to Stalk Rot Caused by Synergistic Infection with Fusarium spp. in Maize [J]. Scientia Agricultura Sinica, 2024, 57(13): 2509-2524.
[13] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
[14] ZHANG HaiQing, ZHANG HengTao, GAO QiMing, YAO JiaLong, WANG YaRong, LIU ZhenZhen, MENG XiangPeng, ZHOU Zhe, YAN ZhenLi. Transcriptome Analysis for Screening Key Genes Related to Regulating Branching Ability in Apple [J]. Scientia Agricultura Sinica, 2024, 57(10): 1995-2009.
[15] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!