Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (1): 127-140.doi: 10.3864/j.issn.0578-1752.2025.01.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province

LÜ JinLing1,2(), YOU Ke3, WANG XiaoFei1, XIAO Qiang4, LI WenFeng5, MA Jin6, YANG Qing7, ZHANG JinPing8, KONG HaiJiang9, CHANG YunHua10,*()   

  1. 1 Institute of Plant Nutrition, Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    2 Henan Key Laboratory of Agricultural Eco-Environment, Zhengzhou 450002
    3 Henan Ecological Environment Monitoring and Security Center, Zhengzhou 450046
    4 Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
    5 Xuchang Meteorological Bureau, Xuchang 461099, Henan
    6 Luoyang Meteorological Bureau, Luoyang 471026, Henan
    7 Anyang Meteorological Bureau, Anyang 455099, Henan
    8 Xinxiang Meteorological Bureau, Xinxiang 453003, Henan
    9 Henan Key Laboratory of Agrometeorological Support and Applied Technique, China Meteorological Administration, Zhengzhou 450003
    10 Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing 210044
  • Received:2024-01-05 Accepted:2024-05-21 Online:2025-01-01 Published:2025-01-07
  • Contact: CHANG YunHua

Abstract:

【Objective】 Ammonia volatilization from cropland is one of the main sources of ammonium salts in atmospheric particulate matter, which has a close impact on urban and rural air quality. The temporal-spatial variation characteristics of near-surface atmospheric ammonia concentration and key influencing factors in a typical agricultural area of Henan Province was conducted systematically, so as to provide the scientific basis for targeted management of atmospheric particulate pollutants in cropland areas.【Method】10 typical cropland areas (wheat-maize rotation areas) in Henan Province were selected to conduct a two-year study on monitoring near-surface ammonia concentration by using the ammonia passive method and investigating its driving factors. 【Result】 In terms of time (seasonality), the highest average near-surface ammonia concentration value was found in summer, with an average of 12.0 μg N·m-3, followed by spring and autumn, with an average of 10.8 and 8.9 μg N·m-3, respectively, and the lowest value in winter, with an average of only 6.7 μg N·m-3. From a spatial perspective, the highest ammonia concentration in the cropland area of Zhengzhou in east Henan was 14.7 μg N·m-3 on average, followed by Xinxiang and Anyang in north Henan with annual average atmospheric ammonia concentrations of 12.5 and 11.0 μg N·m-3, respectively. Zhengzhou in central Henan and Jiaozuo in north Henan had near-surface atmospheric ammonia concentrations of 10.9 and 10.6 μg N·m-3, respectively, while the near-surface atmospheric ammonia concentrations in Luoyang, Pingdingshan, Xuchang, Luohe and Zhoukou in west Henan and south Henan were between 7.9 and 9.6 μg N·m-3. From the perspective of soil types, among which fluvo-aquic soils had the highest near-surface ammonia concentration, with values ranging from 11.0 to 14.7 μg N·m-3; the ammonia concentration values in the cinnamon soil and yellow cinnamon soil areas ranged from 9.0 to 9.6 μg N·m-3; the ammonia concentration in lime concretion lime concretion black soil and yellow brown soil cropland was relatively low, with values ranging from 8.06 to 8.11 μg N·m-3. The high and low near-surface ammonia concentrations in different regions were the result of multiple factors working together. Among them, there was a significant positive correlation between nitrogen fertilizer application rate and soil pH value and near-surface ammonia concentration, while there was a significant negative correlation between rainfall and near-surface ammonia concentration.【Conclusion】Based on the above research results, it was believed that reducing nitrogen application rate could help to systematically reduce the near-surface ammonia concentration in the cropland area of Henan Province, and the cropland area of northern and eastern Henan Province were the key areas of attention.

Key words: wheat-maize rotation areas, near-surface ambient ammonia concentration, temporal-spatial variation characteristics, passive sampling, linear correlation analysis, inverse distance method, Henan Province

Fig. 1

Distribution diagram of monitoring sites in typical cropland in Henan Province"

Table 1

Soil types, meteorological details and sampling time of different monitoring sites in typical cropland areas in Hean Province"

地点
Location
经度
Latitude
纬度
Longitude
海拔
Altitude(m)
年均气温
Annual mean temperature (℃)
年均降雨量
Average rainfall
(mm)
采样时期
Period
新乡Xinxiang, XX 113°35′24″ 35°25′27″ 76 14.0 573.4 2017.5.10-2019.4.9
平顶山 Pingdinshan, PDS 114°33′48″ 36°4′59″ 124 14.9 745.8 2017.5.10-2019.4.15
黄泛区 Huangfanqu, HFQ 114°15′13″ 34°43′22″ 64 14.0 750.0 2017.5.22-2019.6.9
郑州Zhenzhou, ZZ 113°10′13″ 35°7′39″ 108 14.3 542.2 2017.5.3-2019.3.21
漯河Luohe, LH 113°35′21″ 33°27′40″ 136 14.6 759.0 2017.5.15-2019.6.13
许昌Xuchang, XC 114°0′49″ 34°11′24″ 71 14.5 705.6 2017.5.9-2019.4.9
焦作Jiaozhuo, JZ 113°10′13″ 35°7′39″ 142 14.0 603.5 2017.5.4-2019.4.3
安阳Anyang, AY 114°33′48″ 36°4′59″ 70 13.5 576.0 2017.5.10-2019.4.8
开封Kaifeng, KF 114°11′47″ 34°34′34″ 69 14.0 635.0 2017.5.10-2018.9.15
洛阳Luoyang, LY 112°24′12″ 34°25′11″ 250 13.8 578.0 2017.5.23-2019.4.15

Table 2

Soil type, soil pH and nitrogen fertilizer type, nitrogen application rate in different regions in Henan Province"

地点
Site
土壤类型
Soil type
土壤pH
Soil pH
作物类型1)
Crop type
氮肥种类占比2)
Proportion of nitrogen fertilizer species (%)
施氮量
Nitrogen application rate (kg·hm-2)
尿素
Urea
氯化铵3)
NH4Cl
其他氮肥 Other N
新乡XX 潮土 CT 8.7 W-M 55 43 2 500
平顶山PDS 黄棕壤HZT 6.5 W-M 60 38 2 500
黄泛区HFQ 黄褐土HHT 6.7 W-M 57 41 2 480
郑州ZZ 潮土CT 8.2 W-M 53 45 2 500
漯河LH 砂姜黑土SJHT 5.9 W-M 62 36 2 470
许昌XC 砂姜黑土SJHT 5.9 W-M 62 36 2 480
焦作JZ 潮土/褐土CT/HT 6.8 W-M 54 44 2 500
安阳AY 潮土CT 8.5 W-M 57 41 2 500
开封KF 潮土CT 8.4 W-M 55 43 2 550
洛阳LY 褐土HT 7.1 W-M 56 42 2 480

Fig. 2

Monthly and seasonal variation characteristics of near-surface ammonia concentration in typical cropland areas in Henan Province"

Fig. 3

Dynamic changes in near-surface ammonia concentration in cropland areas in different regions in Henan Province"

Fig.4

Near-surface ammonia concentration in cropland areas in different regions in Henan Province"

Fig. 5

Average near-surface ammonia concentration in cropland areas in different precipitation and soil types in Henan Province CT, HT, HHT, HZT and SJHT represent different soil types respectively, as shown in Table 2"

Fig. 6

Spatial distribution of nitrogen fertilizer application rate per unit area (A) and near-surface ammonia concentration (B) in different regions in Henan Province"

Fig. 7

Linear correlation between key influencing factors and average near-surface ammonia concentration"

Table 3

Correlation matrix between different factors"

NH3 pH Pre. N Tem.
相关性
Correlation
NH3 1 0.831 -0.568 0.859 0.353
pH 1 -0.772 0.638 -0.646
Pre. 1 -0.344 0.404
N 1 -0.384
Tem. 1
显著性(单尾)
Significance (single tail)
NH3 0.001** 0.043* 0.001** 0.070
pH 0.004** 0.024* 0.022*
Pre. 0.166 0.124
N 0.137
Tem.
[1]
刘学军, 沙志鹏, 宋宇, 董红敏, 潘月鹏, 高志岭, 李玉娥, 马林, 董文旭, 胡春胜, 王文林, 王悦, 耿红, 郑云昊, 顾梦娜. 我国大气氨的排放特征、减排技术与政策建议. 环境科学研究, 2021, 34(1): 149-157.
LIU X J, SHA Z P, SONG Y, DONG H M, PAN Y P, GAO Z L, LI Y E, MA L, DONG W X, HU C S, WANG W L, WANG Y, GENG H, ZHENG Y H, GU M N. China’s atmospheric ammonia emission characteristics, mitigation options and policy recommendations. Research of Environmental Sciences, 2021, 34(1): 149-157. (in Chinese)
[2]
GU B J, ZHANG L, VAN DINGENEN R, VIENO M, VAN GRINSVEN H J, ZHANG X M, ZHANG S H, CHEN Y F, WANG S T, REN C C, RAO S, HOLLAND M, WINIWARTER W, CHEN D L, XU J M, SUTTON M A. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science, 2021, 374(6568): 758-762.
[3]
XU W, ZHAO Y H, WEN Z, CHANG Y H, PAN Y P, SUN Y L, MA X, SHA Z P, LI Z Y, KANG J H, LIU L, TANG A H, WANG K, ZHANG Y, GUO Y X, ZHANG L, SHENG L F, ZHANG X M, GU B J, SONG Y, VAN DAMME M, CLARISSE L, COHEUR P F, COLLETT J L Jr, GOULDING K, ZHANG F S, HE K B, LIU X J. Increasing importance of ammonia emission abatement in PM2.5 pollution control. Science Bulletin, 2022, 67(17): 1745-1749.
[4]
蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题. 植物营养与肥料学报, 2014, 20(1): 1-6.
CAI Z C, YAN X Y, ZHU Z L. A great challenge to solve nitrogen pollution from intensive agriculture. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 1-6. (in Chinese)
[5]
周斌, 王雪, 段玉森, 顾传奇, 朱健. 北京秋冬季大气氨观测研究. 环境科学学报, 2022, 42(9): 384-391.
ZHOU B, WANG X, DUAN Y S, GU C Q, ZHU J. The observation of atmospheric ammonia in Beijing during autumn and winter. Acta Scientiae Circumstantiae, 2022, 42(9): 384-391. (in Chinese)
[6]
吾拉哈提·阿达力别克, 展晓莹, 周丰, 居学海, 习斌, 黄宏坤, 靳拓, 许丹丹. 京津冀地区农业源氨排放的时空格局与减排潜力. 农业环境科学学报, 2021, 40(10): 2236-2245.
WULAHATI·ADALIBIEKE, ZHAN X Y, ZHOU F, JU X H, XI B, HUANG H K, JIN T, XU D D. Spatiotemporal pattern and potential to mitigate ammonia emissions from agriculture in Beijing-Tianjin- Hebei region, China. Journal of Agro-Environment Science, 2021, 40(10): 2236-2245. (in Chinese)
[7]
谢梓豪, 樊品镐, 武华, 程琨, 潘根兴. 基于氨挥发因子方法的中国农田氨排放量估算. 环境科学学报, 2020, 40(11): 4180-4188.
XIE Z H, FAN P G, WU H, CHENG K, PAN G X. Deriving volatile factors and estimating direct ammonia emissions for crop cultivation in China. Acta Scientiae Circumstantiae, 2020, 40(11): 4180-4188. (in Chinese)
[8]
刘湘雪, 蒲维维, 马志强, 林伟立, 韩婷婷, 李颖若, 周礼岩, 石庆峰. 北京地区大气氨时空变化特征. 中国环境科学, 2021, 41(8): 3473-3483.
LIU X X, PU W W, MA Z Q, LIN W L, HAN T T, LI Y R, ZHOU L Y, SHI Q F. Study on the temporal and spatial variation of atmospheric ammonia in Beijing. China Environmental Science, 2021, 41(8): 3473-3483. (in Chinese)
[9]
邵生成, 常运华, 曹芳, 林煜棋, 范美益, 谢锋, 洪一航, 章炎麟. 南京城市大气氨-铵的高频演化及其气粒转化机制. 环境科学, 2019, 40(10): 4355-4363.
SHAO S C, CHANG Y H, CAO F, LIN Y Q, FAN M Y, XIE F, HONG Y H, ZHANG Y L. High-frequency evolution of urban atmospheric ammonia and ammonium and its gas-to-particle conversion mechanism in Nanjing city. Environmental Science, 2019, 40(10): 4355-4363. (in Chinese)
[10]
BENEDICT K B, CHEN X, SULLIVAN A P, LI Y, DAY D, PRENNI A J, LEVIN E J T, KREIDENWEIS S M, MALM W C, SCHICHTEL B A, COLLETT J L Jr. Atmospheric concentrations and deposition of reactive nitrogen in Grand Teton National Park. Journal of Geophysical Research: Atmospheres, 2013, 118(20): 11875-11887.
[11]
LI Y, SCHICHTEL B A, WALKER J T, SCHWEDE D B, CHEN X, LEHMANN C M B, PUCHALSKI M A, GAY D A, JR COLLETT J L. Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21): 5874-5879.
[12]
KIM M S, KOO N, HYUN S, KIM J G. Comparison of ammonia emission estimation between passive sampler and chamber system in paddy soil after fertilizer application. International Journal of Environmental Research and Public Health, 2020, 17(17): 6387.
[13]
SCHJOERRING J K, SOMMER S G, FERM M. A simple passive sampler for measuring ammonia emission in the field. Water, Air, and Soil Pollution, 1992, 62(1): 13-24.
[14]
闵炬, 孙海军, 陈贵, 姜振萃, 陆扣萍, 纪荣婷, 施卫明. 太湖地区集约化农田氮素减排增效技术实践. 农业环境科学学报, 2018, 37(11): 2418-2426.
MIN J, SUN H J, CHEN G, JIANG Z C, LU K P, JI R T, SHI W M. The practice of technologies for nitrogen emission reduction and efficiency increase in intensive farmland of Tai Lake region. Journal of Agro-Environment Science, 2018, 37(11): 2418-2426. (in Chinese)
[15]
吕金岭, 王小非, 寇长林. 两种方法测定砂姜黑土玉米季农田氨挥发. 磷肥与复肥, 2020, 35(11): 45-49.
J L, WANG X F, KOU C L. Two methods for determination of ammonia volatilization in corn field of lime concretion black soil. Phosphate & Compound Fertilizer, 2020, 35(11): 45-49. (in Chinese)
[16]
贾玉欢, 王春迎, 孙凯, 马景金, 曹璟, 李谦, 武蕾丹, 马博健, 马江红, 王玉红. 洛阳市2017年大气氨排放清单的建立及其空间分布特征. 中国环境监测, 2021, 37(5): 116-124.
JIA Y H, WANG C Y, SUN K, MA J J, CAO J, LI Q, WU L D, MA B J, MA J H, WANG Y H. The establishment of the anthropogenic ammonia emission inventory and its spatial distribution characteristics in Luoyang city in 2017. Environmental Monitoring in China, 2021, 37(5): 116-124. (in Chinese)
[17]
王琛, 尹沙沙, 于世杰, 卫军华, 谷幸珂, 宫密秘, 张瑞芹. 河南省2013年大气氨排放清单建立及分布特征. 环境科学, 2018, 39(3): 1023-1030.
WANG C, YIN S S, YU S J, WEI J H, GU X K, GONG M M, ZHANG R Q. A 2013-based atmospheric ammonia emission inventory and its characteristic of spatial distribution in Henan Province. Environmental Science, 2018, 39(3): 1023-1030. (in Chinese)
[18]
WANG C, DUAN J K, REN C C, LIU H B, REIS S, XU J M, GU B J. Ammonia emissions from croplands decrease with farm size in China. Environmental Science & Technology, 2022, 56(14): 9915-9923.
[19]
LUO X S, LIU X J, PAN Y P, WEN Z, XU W, ZHANG L, KOU C L, LV J L, GOULDING K. Atmospheric reactive nitrogen concentration and deposition trends from 2011 to 2018 at an urban site in North China. Atmospheric Environment, 2020, 224: 117298.
[20]
HE Y X, PAN Y P, ZHANG G Z, JI D S, TIAN S L, XU X J, ZHANG R J, WANG Y S. Tracking ammonia morning peak, sources and transport with 1Hz measurements at a rural site in North China Plain. Atmospheric Environment, 2020, 235: 117630.
[21]
吕金岭, 王小非, 骆晓声, 梁少民, 寇长林. 减氮条件下砂壤质潮土区小麦-玉米轮作体系氨挥发特征及排放系数. 植物营养与肥料学报, 2021, 27(2): 346-359.
J L, WANG X F, LUO X S, LIANG S M, KOU C L. Ammonia volatilization characteristics and emission coefficients of wheat and maize rotation in sandy fluvo-aquic soil under reduced N fertilization. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 346-359. (in Chinese)
[22]
LUO X S, LIU P, TANG A H, LIU J Y, ZONG X Y, ZHANG Q, KOU C L, ZHANG L J, FOWLER D, FANGMEIER A, CHRISTIE P, ZHANG F S, LIU X J. An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics. Atmospheric Environment, 2013, 74: 209-216.
[23]
PAN Y P, TIAN S L, ZHAO Y H, ZHANG L, ZHU X Y, GAO J, HUANG W, ZHOU Y B, SONG Y, ZHANG Q, WANG Y S. Identifying ammonia hotspots in China using a national observation network. Environmental Science & Technology, 2018, 52(7): 3926-3934.
[24]
HAYASHI K, KOMADA M, MIYATA A. Atmospheric deposition of reactive nitrogen on turf grassland in central Japan: Comparison of the contribution of wet and dry deposition. Water, Air, & Soil Pollution: Focus, 2007, 7(1): 119-129.
[25]
胡瞒瞒, 董文旭, 王文岩, Gokul Gaudel, Peter Mosongo, 胡春胜. 华北平原氮肥周年深施对冬小麦-夏玉米轮作体系土壤氨挥发的影响. 中国生态农业学报(中英文), 2020, 28(12): 1880-1889.
HU M M, DONG W X, WANG W Y, GAUDEL G, MOSONGO P, HU C S. The effects of deep application of nitrogen fertilization on ammonia volatilization in a winter wheat/summer maize rotation system in the North China Plain. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1880-1889. (in Chinese)
[26]
谢威, 王盈盈, 孙婷, 王慎强, 赵旭. 室内培养条件下两种氨挥发监测方法的比较. 农业环境科学学报, 2019, 38(11): 2632-2641.
XIE W, WANG Y Y, SUN T, WANG S Q, ZHAO X. Comparison of the ammonia detector-tube and boric acid absorption-standard acid titration methods to quantify ammonia volatilization in soil incubation. Journal of Agro-Environment Science, 2019, 38(11): 2632-2641. (in Chinese)
[27]
张惠, 杨正礼, 罗良国, 张晴雯, 易军, 王永生, 陈媛媛, 王明. 黄河上游灌区稻田氨挥发损失研究. 植物营养与肥料学报, 2011, 17(5): 1131-1139.
ZHANG H, YANG Z L, LUO L G, ZHANG Q W, YI J, WANG Y S, CHEN Y Y, WANG M. Study on the ammonia volatilization from paddy field in irrigation area of the Yellow River. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1131-1139. (in Chinese)
[28]
XU J, CHEN J, ZHAO N, WANG G C, YU G Y, LI H, HUO J T, LIN Y F, FU Q Y, GUO H Y, DENG C R, LEE S H, CHEN J M, HUANG K. Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment. Atmospheric Chemistry and Physics, 2020, 20(12): 7259-7269.
[29]
SHEN J L, LI Y, LIU X J, LUO X S, TANG H, ZHANG Y Z, WU J S. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China. Atmospheric Environment, 2013, 67: 415-424.
[30]
LI Y, THOMPSON T M, VAN DAMME M, CHEN X, BENEDICT K B, SHAO Y X, DAY D, BORIS A, SULLIVAN A P, HAM J, WHITBURN S, CLARISSE L, COHEUR P F, COLLETT J L Jr. Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States. Atmospheric Chemistry and Physics, 2017, 17(10): 6197-6213.
[31]
赵燕. 河南省砂姜黑土系统分类归属及代表土系的建立[D]. 郑州: 郑州大学, 2012.
ZHAO Y. Calcic black soils classified in Chinese soil taxonomy and the soil series established in Henan Province[D]. Zhengzhou: Zhengzhou University, 2012. (in Chinese)
[32]
吕金岭, 王小非, 李太魁, 寇长林. 不同施肥方式下砂姜黑土冬小麦-夏玉米轮作农田氨挥发特征及排放系数. 中国生态农业学报(中英文), 2020, 28(12): 1869-1879.
J L, WANG X F, LI T K, KOU C L. Ammonia emission characteristics and emission coefficients of wheat and corn rotation cropland under different fertilization methods in lime concretion black soil. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1869-1879. (in Chinese)
[1] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[2] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[3] GAO HuiShan, LI GenMing, ZHANG JinCai, JI GuangXing, LI QingSong. Supply and Demand Balance Analysis of Livestock and Poultry Manure Equivalent Substitution of Chemical Fertilizer in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(23): 4746-4760.
[4] FangJie LI,JianQiang REN,ShangRong WU,ZhongXin CHEN,NingDan ZHANG. Spatio-Temporal Variations of Winter Wheat Planting Frequency and Their Analysis of Influencing Factors in Henan Province [J]. Scientia Agricultura Sinica, 2020, 53(9): 1773-1794.
[5] Xia XU,YaNan ZHAO,YuFang HUANG,JunYing YAN,YouLiang YE. Fertilization Effect of Wheat Under Different Soil Fertilities [J]. Scientia Agricultura Sinica, 2018, 51(21): 4076-4086.
[6] . Genetic Diversity Analysis of Henan Maize Landrace by Phenotype and Simple Sequence Repeat (SSR) Markers
[J]. Scientia Agricultura Sinica, 2009, 42(4): 1136-1144 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!