Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (23): 4698-4711.doi: 10.3864/j.issn.0578-1752.2024.23.010

• PLANT PROTECTION • Previous Articles     Next Articles

Accurate and Rapid Identification of Event Purity for Transgenic Soybean Seeds Based on Duplex Real-Time Fluorescence PCR Method

LI YunJing1(), REN XueZhen2, XIAO Fang1, JIN Fang2, GAO HongFei1, JING Qi2, WU YuHua1, SUN Quan2, LI Jun1, WANG Pei2, ZHAI ShanShan1, JIN ShiQiao2(), WU Gang1()   

  1. 1 Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs/Inspection and Testing Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    2 National Agro-Tech Extension and Service Center, Beijing 100125
  • Received:2024-07-03 Accepted:2024-09-16 Online:2024-12-01 Published:2024-12-07

Abstract:

【Objective】 Production and application safety certificates have been successively granted to herbicide-tolerant soybean, including SHZD3201, DBN9004, and ZH10-6. The objective of this study is to establish duplex real-time fluorescence PCR detection methods for these three events, which are applied to the accurate and rapid identification of the purity of soybean transgenic event seeds, and to provide technical support for the quality and safety supervision of soybean transgenic varieties seeds.【Method】 Three event-specific real-time PCR methods for herbicide-tolerant soybean: SHZD3201, DBN9004, ZH10-6, and four soybean-specific real-time PCR methods targeting the Lectin were collected. Through the comparison of ΔCt values, the most effective soybean reference gene detection approach for duplex real-time fluorescence PCR was chosen. The study further adjusted the concentration of primers and probes for both events and Lectin, optimizing the reaction system of duplex real-time fluorescence PCR. The duplex real-time fluorescence PCR methods underwent specificity testing using diverse types of samples. The limit of detection (LOD) was assessed using range of gradient samples containing 2 000, 200, 20, 10, 5, and 1 copies. Using one-step extraction solution for rapid grinding of individual seeds, the diluted crude extract was directly used for duplex real-time fluorescence PCR amplification, thereby conducting event purity testing of individual seeds for herbicide-tolerant soybeans SHZD3201, DBN9004, and ZH10-6.【Result】 Following the determination of the minimum ΔCt value through testing and calculation, the optimal soybean reference gene for detecting Lectin was selected in duplex real-time fluorescence PCR of SHZD3201, DBN9004, and ZH10-6 events. After optimization, the SHZD3201/Lectin duplex real-time fluorescence PCR reaction system exhibited optimal performance with the primer/probe concentration of 0.3 μmol·L-1/0.15 μmol·L-1 for SHZD3201 event and the primer/probe concentration of 0.3 μmol·L-1/0.15 μmol·L-1 for Lectin. In the DBN9004/Lectin duplex real-time fluorescence PCR reaction system, the primer/probe concentrations for both the DBN9004 event and Lectin were identical, setting at 0.4 μmol·L-1 for the prime and 0.2 μmol·L-1 for the probe. In the duplex real-time fluorescence PCR reaction system of ZH10-6/Lectin, the primer/probe concentration of ZH10-6 event was 0.4 μmol·L-1/0.2 μmol·L-1, the primer/probe concentration for the Lectin was 0.5 μmol·L-1/0.25 μmol·L-1. The three methods had good specificity with the LOD of 10 copies each. Using 100 simulated single-seed samples, after rapid grinding and a 5-fold dilution of the template, the direct duplex real-time fluorescence PCR was used for rapid amplification, and the event purity of transgenic seeds of SHZD3201, DBN9004, and ZH10-6 was successfully detected.【Conclusion】 This study successfully established three duplex real-time fluorescence PCR methods for herbicide-tolerant soybean SHZD3201, DBN9004, and ZH10-6. By combining a rapid DNA extraction method using one-step extraction solution, the research achieved precise and rapid detection of event purity in transgenic soybean seeds.

Key words: herbicide-tolerant soybean, seed, duplex real-time fluorescence PCR, event purity

Table 1

Materials information"

样品Sample 组分Component
转基因大豆Transgenic soybean GTS40-3-2, MON89788, A5547-127, A2704-12, 356043, 305423, CV127, MON87701, MON87708, MON87769, MON87705, FG72, DAS81419-2
转基因玉米Transgenic maize Bt11, Bt176, MON810, MON863, GA21, NK603, T25, TC1507, MON89034, MON88017, 59122, MIR604, 3272, MON87460, DAS40278-9, 4114, MON87427, 5307
转基因水稻Transgenic rice TT51-1, KF-6, KMD-1, M12, KF-8, KF-2, G6H1, T1C-19
转基因棉花Transgenic cotton MON1445, MON531, MON15985, LLCOTTON25, MON88913, GHB614, COT102
转基因油菜Transgenic rapeseed MS1, MS8, RF1, RF2, RF3, T45, Oxy-235, Topas19/2, MON88302, 73496

Table 2

Information of primers and probes"

名称
Name
引物/探针名称
Primer/probe name
序列
Sequence (5′-3′)
扩增片段
Amplified fragment (bp)
来源
Source
SHZD3201 SHZD32-1QF TCGTTTCCCGCCATAAGG 120 [27]
SHZD32-1QR CATCAACCAAGAGCAACAGCAT
SHZD32-1QP FAM-TCCGACCACCACGAGACCGTAGTACA-BHQ1
DBN9004 DBN9004-QF AACGCGGCCGCTCTAG 165 [28]
DBN9004-QR ATTATGTGGAAAGAAATGACCGAAA
DBN9004-QP FAM-CGCCGGGTCCCGTTTAAACTATCAGT-BHQ1
中黄6106
ZH10-6
ZH6106-QF TCTAAGCGTCAATTTGTTTACATCA 96 研发者
Developer
ZH6106-QR AAAGGTGTGAAATGTGAACGC
ZH6106-QP FAM-TTACCTAAAACATCTCAGCACATCGC-BHQ1
Lectin1 lecF CCAGCTTCGCCGCTTCCTTC 74 [35]
lecR GAAGGCAAGCCCATCTGCAAGCC
lecP HEX-CTTCACCTTCTATGCCCCTGACAC-BHQ1
Lectin2 LecF1 TCCACCCCCATCCACATTT 81 [36]
LecR1 GGCATAGAAGGTGAAGTTGAAGGA
LecP1 HEX-AACCGGTAGCGTTGCCAGCTTCG-BHQ1
Lectin3 LecF2 GCCCTCTACTCCACCCCCA 118 [37]
LecR2 GCCCATCTGCAAGCCTTTTT
LecP2 HEX-AGCTTCGCCGCTTCCTTCAACTTCAC-BHQ1
Lectin4 LecF3 TGGTCGCGCCCTCTACTC 70 [38]
LecR3 GGCGAAGCTGGCAACG
LecP3 HEX-CTACCGGTTTCTTTGTCCCAAATGTGGAT-BHQ1

Table 3

Combinations of primer/probe in a duplex real-time fluorescence PCR reaction system"

编号
No.
转化体
Event
Lectin
1 0.3 μmol·L-1/0.15 μmol·L-1 0.3 μmol·L-1/0.15 μmol·L-1
2 0.3 μmol·L-1/0.15 μmol·L-1 0.4 μmol·L-1/0.2 μmol·L-1
3 0.3 μmol·L-1/0.15 μmol·L-1 0.5 μmol·L-1/0.25 μmol·L-1
4 0.4 μmol·L-1/0.2 μmol·L-1 0.3 μmol·L-1/0.15 μmol·L-1
5 0.4 μmol·L-1/0.2 μmol·L-1 0.4 μmol·L-1/0.2 μmol·L-1
6 0.4 μmol·L-1/0.2 μmol·L-1 0.5 μmol·L-1/0.25 μmol·L-1
7 0.5 μmol·L-1/0.25 μmol·L-1 0.3 μmol·L-1/0.15 μmol·L-1
8 0.5 μmol·L-1/0.25 μmol·L-1 0.4 μmol·L-1/0.2 μmol·L-1
9 0.5 μmol·L-1/0.25 μmol·L-1 0.5 μmol·L-1/0.25 μmol·L-1

Table 4

Amplification results of events and Lectin in duplex real-time fluorescence PCR"

靶标
Target
转化体的Ct值Ct value of event Lectin的Ct值Ct value of Lectin ΔCt值
ΔCt value
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平均值
Mean
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平均值
Mean
SHZD3201/Lectin1 28.54 28.47 28.49 28.50 29.12 29.09 29.07 29.09 -0.59
SHZD3201/Lectin2 28.48 28.53 28.48 28.50 28.50 28.56 28.40 28.49 0.01
SHZD3201/Lectin3 28.60 28.55 28.52 28.56 29.50 29.49 29.43 29.47 -0.91
SHZD3201/Lectin4 28.75 28.79 28.64 28.73 29.37 29.25 29.34 29.32 -0.59
DBN9004/Lectin1 28.19 28.09 28.19 28.16 29.34 29.11 29.16 29.20 -1.05
DBN9004/Lectin2 28.10 28.06 27.94 28.03 28.37 28.52 28.53 28.47 -0.44
DBN9004/Lectin3 28.08 28.04 28.18 28.10 29.42 29.34 29.48 29.41 -1.31
DBN9004/Lectin4 28.15 28.15 28.18 28.16 29.11 29.09 29.16 29.12 -0.96
中黄6106/Lectin1
ZH10-6/Lectin1
28.45 28.16 28.13 28.25 29.50 29.26 29.30 29.35 -1.11
中黄6106/Lectin2
ZH10-6/Lectin2
28.20 28.13 28.08 28.14 28.57 28.39 28.44 28.47 -0.33
中黄6106/Lectin3
ZH10-6/Lectin3
28.13 28.10 28.13 28.12 29.56 29.48 29.55 29.53 -1.41
中黄6106/Lectin4
ZH10-6/Lectin4
28.10 27.94 28.18 28.07 29.20 29.10 29.41 29.24 -1.16

Table 5

Optimization of duplex real-time fluorescence PCR reaction system for SHZD3201/Lectin"

编号
No.
SHZD3201转化体的Ct值Ct value of event SHZD3201 Lectin的Ct值Ct value of Lectin ΔCt值
ΔCt value
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平均值
Mean
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平均值
Mean
1 29.19 29.18 29.12 29.16 29.15 29.06 29.07 29.09 0.07
2 29.05 28.89 28.94 28.96 28.56 28.47 28.65 28.56 0.40
3 29.09 29.03 29.02 29.05 28.45 28.50 28.52 28.49 0.56
4 28.81 28.86 28.68 28.78 28.84 28.97 28.85 28.89 -0.10
5 28.83 28.97 28.67 28.82 28.61 28.61 28.60 28.61 0.22
6 29.05 29.04 28.93 29.01 28.60 28.45 28.52 28.52 0.48
7 28.94 28.89 28.81 28.88 29.10 29.05 29.04 29.06 -0.18
8 29.23 29.24 28.98 29.15 29.04 29.01 28.90 28.98 0.17
9 28.73 29.03 28.94 28.90 28.56 28.60 28.61 28.59 0.31

Table 6

Optimization of duplex real-time fluorescence PCR reaction system for DBN9004/Lectin"

编号
No.
DBN9004转化体的Ct值Ct value of event DBN9004 Lectin的Ct值Ct value of Lectin ΔCt值
ΔCt value
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平均值
Mean
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平均值
Mean
1 28.65 28.71 28.63 28.66 28.87 28.99 28.77 28.88 -0.21
2 28.63 28.53 28.50 28.55 28.38 28.31 28.31 28.33 0.22
3 28.55 28.59 28.53 28.56 28.18 28.17 28.09 28.15 0.41
4 28.44 28.36 28.50 28.43 28.44 28.46 28.54 28.48 -0.05
5 28.40 28.39 28.36 28.38 28.26 28.25 28.29 28.27 0.12
6 28.34 28.30 28.45 28.36 28.11 28.07 28.11 28.10 0.27
7 28.55 28.47 28.49 28.50 28.79 28.73 28.68 28.73 -0.23
8 28.79 28.8 28.56 28.72 28.70 28.56 28.45 28.57 0.15
9 28.32 28.53 28.37 28.41 28.10 28.18 28.06 28.11 0.29

Table 7

Optimization of duplex real-time fluorescence PCR reaction system for ZH10-6/Lectin"

编号
No.
中黄6106转化体的Ct值Ct value of event ZH10-6 Lectin的Ct值Ct value of Lectin ΔCt值
ΔCt value
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平均值
Mean
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平均值
Mean
1 28.82 28.77 28.63 28.74 29.31 29.29 29.16 29.25 -0.51
2 28.97 28.79 28.67 28.81 28.82 28.73 28.66 28.74 0.07
3 28.70 28.62 28.50 28.61 28.68 28.41 28.27 28.45 0.15
4 28.59 28.49 28.34 28.47 29.06 29.02 28.78 28.95 -0.48
5 28.59 28.47 28.34 28.47 28.85 28.77 28.65 28.76 -0.29
6 28.51 28.54 28.58 28.54 28.48 28.58 28.57 28.54 0
7 28.52 28.23 28.16 28.30 29.18 29.02 29.02 29.07 -0.77
8 28.41 28.27 28.65 28.44 28.85 28.8 28.95 28.87 -0.42
9 28.84 28.93 29.12 28.96 28.94 28.89 28.91 28.91 0.05

Fig. 1

SHZD3201/Lectin duplex real-time fluorescence PCR specificity test"

Fig. 2

DBN9004/Lectin duplex real-time fluorescence PCR specificity test"

Fig. 3

ZH10-6/Lectin duplex real-time fluorescence PCR specificity test"

Fig. 4

Amplification of event purity detection for SHZD3201 seed"

Fig. 5

Amplification of event purity detection for DBN9004 seed"

Fig. 6

Amplification of event purity detection for ZH10-6 seed"

[1]
胡壮壮, 王路路, 姜雪冰, 尹毛珠, 姜磊, 李进步, 沈维良. 我国大豆产业发展现状分析及对策. 大豆科技, 2023(4): 1-11.
HU Z Z, WANG L L, JIANG X B, YIN M Z, JIANG L, LI J B, SHEN W L. Analysis and countermeasure of soybean industry development status in China. Soybean Science and Technology, 2023(4): 1-11. (in Chinese)
[2]
李奕聪, 王新刚, 司伟. 2022年大豆产业发展趋势与政策建议. 大豆科技, 2021(1): 6-8.
LI Y C, WANG X G, SI W. Development trends and policy advocacy of soybean industry in 2022. Soybean Science and Technology, 2021(1): 6-8. (in Chinese)
[3]
闫伟, 董立明, 何禹璇, 夏蔚, 李葱葱, 龙丽坤, 李飞武. 我国转基因大豆研究进展. 农业科技管理, 2021, 40(4): 47-52, 71.
YAN W, DONG L M, HE Y X, XIA W, LI C C, LONG L K, LI F W. Research progress on genetically modified soybeans in China. Management of Agricultural Science and Technology, 2021, 40(4): 47-52, 71. (in Chinese)
[4]
孙亚男, 张维耀, 王金星, 潘文婧, 姜成喜, 付春旭, 姜世波, 曲梦楠, 高陆思, 景玉良, 付亚书. 转基因作物研究进展及我国转基因大豆的现状与未来. 中国种业, 2022(5): 21-25.
SUN Y N, ZHANG W Y, WANG J X, PAN W J, JIANG C X, FU C X, JIANG S B, QU M N, GAO L S, JING Y L, FU Y S. Research progress on genetically modified crops and the current and future status of genetically modified soybeans in China. China Seed Industry, 2022(5): 21-25. (in Chinese)
[5]
WANG J B, YANG Q W, LIU H, CHEN Y F, JIANG W, WANG Y, ZENG H J. A nanomaterial-free and thionine labeling-based lateral flow immunoassay for rapid and visual detection of the transgenic CP4-EPSPS protein. Food Chemistry, 2022, 378: 132112.
[6]
李允静, 万丹凤, 刘标, 肖芳, 李晓飞, 武玉花, 李俊, 高鸿飞, 沈文静, 李均, 朱莉, 吴刚. 转基因大豆CP4-EPSPS蛋白的降解规律研究. 中国油料作物学报, 2021, 43(1): 124-130.
LI Y J, WAN D F, LIU B, XIAO F, LI X F, WU Y H, LI J, GAO H F, SHEN W J, LI J, ZHU L, WU G. Research on degradation of CP4-EPSPS protein from transgenic soybean. Chinese Journal of Oil Crop Sciences, 2021, 43(1): 124-130. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2020214
[7]
RONG R J, WU P C, LAN J P, WEI H F, WEI J, CHEN H, SHI J N, HAO Y J, LIU L J, DOU S J, LI L Y, WU L, LIU S Q, YIN C C, LIU G Z. Western blot detection of PMI protein in transgenic rice. Journal of Integrative Agriculture, 2016, 15(4): 726-734.
[8]
GAO H F, WEN L K, TIAN J, WU Y H, LIU F, LIN Y J, HUA W, WU G. A portable electrochemical immunosensor for highly sensitive point-of-care testing of genetically modified crops. Biosensors and Bioelectronics, 2019, 142: 111504.
[9]
宁成香, 武利庆. 转基因蛋白检测技术研究进展与展望. 计量科学与技术, 2023, 67(8): 29-35.
NING C X, WU L Q. Advancements and future perspectives in transgenic protein detection technology. Metrology Science and Technology, 2023, 67(8): 29-35. (in Chinese)
[10]
王颢潜, 高鸿飞, 王梦雨, 王晨尧, 刘鹏程, 张秀杰. 转基因生物成分快速检测技术研究进展. 中国油料作物学报, 2022, 44(3): 491-496.

doi: 10.19802/j.issn.1007-9084.2021078
WANG H Q, GAO H F, WANG M Y, WANG C Y, LIU P C, ZHANG X J. Research progress on the rapid detection technologies for composition of genetically modified organisms. Chinese Journal of Oil Crop Sciences, 2022, 44(3): 491-496. (in Chinese)
[11]
HOLST-JENSEN A, BERTHEAU Y, DE LOOSE M, GROHMANN L, HAMELS S, HOUGS L, MORISSET D, PECORARO S, PLA M, VAN DEN BULCKE M, WULFF D. Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnology Advances, 2012, 30(6): 1318-1335.
[12]
肖芳, 李允静, 武玉花, 李俊, 高鸿飞, 翟杉杉, 吴刚, 梁晋刚. 抗逆大豆IND-ØØ41Ø-5转化体特异性定性PCR检测方法的建立及其标准化. 中国油料作物学报, doi: 10.19802/j.issn.1007-9084.2023043.
XIAO F, LI Y J, WU Y H, LI J, GAO H F, ZHAI S S, WU G, LIANG J G. Event-specific qualitative PCR detection method of stress- resistant soybean IND-ØØ41Ø-5 and its standardization. Chinese Journal of Oil Crop Sciences, doi: 10.19802/j.issn.1007-9084.2023043. (in Chinese)
[13]
马卉, 汪秀峰, 李莉, 陆徐忠, 倪大虎, 杨剑波. 转基因耐除草剂大豆A2704-12定性PCR检测方法研究. 分子植物育种, 2011, 9(3): 376-380.
MA H, WANG X F, LI L, LU X Z, NI D H, YANG J B. Establishment of an event-specific qualitative PCR method for detection of herbicide-tolerance genetically modified soybean A2704-12. Molecular Plant Breeding, 2011, 9(3): 376-380. (in Chinese)
[14]
李飞武, 李葱葱, 董立明, 邢珍娟, 张明. 转基因大豆MON89788转化体特异性定性PCR检测. 安徽农业科学, 2010, 38(13): 6679-6682.
LI F W, LI C C, DONG L M, XING Z J, ZHANG M. Establishment of event-specific qualitative PCR method for transgenic soybean MON89788. Journal of Anhui Agricultural Sciences, 2010, 38(13): 6679-6682. (in Chinese)
[15]
李允静, 肖芳, 武玉花, 李俊, 高鸿飞, 翟杉杉, 梁晋刚, 吴刚. 抗逆大豆IND-ØØ41Ø-5转化体特异性定量PCR检测方法建立及其标准化. 中国农业科学, 2023, 56(13): 2443-2460. doi: 10.3864/j.issn.0578-1752.2023.13.002.
LI Y J, XIAO F, WU Y H, LI J, GAO H F, ZHAI S S, LIANG J G, WU G. Establishment and standardization of event-specific real-time quantitative PCR detection method of stress-resistant soybean IND-ØØ41Ø-5. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460. doi: 10.3864/j.issn.0578-1752.2023.13.002. (in Chinese)
[16]
WU G, WU Y H, NIE S J, ZHANG L, XIAO L, CAO Y L, LU C M. Real-time PCR method for detection of the transgenic rice event TT51-1. Food Chemistry, 2010, 119(1): 417-422.
[17]
LI Y J, XIAO F, ZHAI C, LI X F, WU Y, GAO H F, LI J, ZHAI S S, LIU B, WU G. Qualitative and quantitative real-time PCR methods for assessing false-positive rates in genetically modified organisms based on the microbial-infection-linked HPT gene. International Journal of Molecular Sciences, 2022, 23: 10000.
[18]
HE Q F, SHANG X G, TIAN R P, ZHU X F, GUO W Z. An efficient and accurate droplet digital PCR method for rapid transgene copy number detection and homozygous identification in cotton (Gossypium hirsutum). Industrial Crops and Products, 2023, 204: 117284.
[19]
LONG L K, YAN W, HE Y X, DONG L M, XING Z J, LI C C, XIA W, LI F W. Development of a duplex digital PCR method to quantify five genetically modified soybean events. Food Analytical Methods, 2022, 15(2): 294-306.
[20]
LIU J, LI Z Y, DONG J, GAO D W. A universal quantification of transgenic soybean event DAS-68416-4 using duplex digital PCR. Journal of the Science of Food and Agriculture, 2021, 101: 624-630.
[21]
GUAN X Y, GUO J C, SHEN P, YANG L T, ZHANG D B. Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Analytical Methods, 2010, 3: 313-320.
[22]
LI R, SHI J X, LIU B, ZHANG D B, ZHAO X X, YANG L T. International collaborative ring trial of four gene-specific loop- mediated isothermal amplification assays in GMO analysis. Food Control, 2018, 84: 278-283.
[23]
WANG X F, XIE S L, CHEN X Y, PENG C, XU X L, WEI W, MA T F, CAI J, XU J F. A rapid and convenient method for on-site detection of MON863 maize through real-time fluorescence recombinase polymerase amplification. Food Chemistry, 2020, 324: 126821.
[24]
WANG R, ZHANG F, WANG L, QIAN W J, WU J, YING Y B. Instant, visual, and instrument-free method for on-site screening of GTS 40-3-2 soybean based on body-heat triggered recombinase polymerase amplification. Analytical chemistry, 2017, 89(8): 4413-4418.
[25]
翟杉杉, 崔丹丹, 杨瑶, 汤敏, 武玉花, 李俊, 李允静, 高鸿飞, 吴刚. 抗虫耐除草剂玉米瑞丰125RPA快速检测方法的建立. 中国油料作物学报, 2023, 45(2): 393-398.

doi: 10.19802/j.issn.1007-9084.2021301
ZHAI S S, CUI D D, YANG Y, TANG M, WU Y H, LI J, LI Y J, GAO H F, WU G. Development of a recombinase polymerase amplification (RPA) method for rapid detection of transgenic maize Ruifeng 125. Chinese Journal of Oil Crop Sciences, 2023, 45(2): 393-398. (in Chinese)
[26]
LI Y J, LI J, WU Y H, CAO Y L, LI J, ZHU L, LI X F, HUANG S M, WU G. Successful detection of foreign inserts in transgenic rice TT51-1 (BT63) by RNA-sequencing combined with PCR. Journal of the Science of Food and Agriculture, 2017, 97: 1634-1639.

doi: 10.1002/jsfa.7913 pmid: 27436567
[27]
农业部2630号公告-15-2017. 转基因植物及其产品成分检测耐除草剂大豆SHZD32-1及其衍生品种定性PCR方法. 北京: 中国农业出版社, 2017.
Announcement by the Ministry of Agriculture No. Detection of genetically modified plants and derived products qualitative PCR method for herbicide-tolerant soybean SHZD32-1 and its derivates. Beijing: China Agriculture Press, 2017. (in Chinese)
[28]
赵新, 刘双, 刘娜, 李瑞环, 高芳瑞, 兰青阔, 梁晋刚, 王永. 耐除草剂大豆‘DBN9004’精准定量检测方法的建立. 农业生物技术学报, 2022, 30(12): 2446-2455.
ZHAO X, LIU S, LIU N, LI R H, GAO F R, LAN Q K, LIANG J G, WANG Y. Establishment of accurate quantitative detection method for herbicide tolerant soybean (Glycine max) ‘DBN9004’. Journal of Agricultural Biotechnology, 2022, 30(12): 2446-2455. (in Chinese)
[29]
刘双, 陈笑芸, 曹际娟, 兰青阔, 檀建新, 王永. 转基因耐除草剂大豆ZH10-6实时荧光定量PCR检测方法的建立. 分子植物育种, 2021, 19(15): 5030-5037.
LIU S, CHEN X Y, CAO J J, LAN Q K, TAN J X, WANG Y. Establishment of real-time quantitative PCR method of transgenetic herbicide-tolerant soybean ZH10-6. Molecular Plant Breeding, 2021, 19(15): 5030-5037. (in Chinese)
[30]
KÖPPEL R, VAN VELSEN F, FELDERER N, BUCHER T. Multiplex real-time PCR for the detection and quantification of DNA from four transgenic soy Mon89788, A5547-127, Roundup Ready, A2704-12 and lectin. European Food Research and Technology, 2012, 235(1): 23-28.
[31]
COTTENET G, BLANCPAIN C, SONNARD V, CHUAH P F. Two FAST multiplex real-time PCR reactions to assess the presence of genetically modified organisms in food. Food Chemistry, 2019, 274: 760-765.

doi: S0308-8146(18)31621-2 pmid: 30373005
[32]
董立明, 李葱葱, 邢珍娟, 邵改革, 夏蔚, 闫伟, 李飞武. 利用多重PCR技术快速检测五个转基因大豆品系. 大豆科学, 2016, 35(6): 1002-1007.
DONG L M, LI C C, XING Z J, SHAO G G, XIA W, YAN W, LI F W. Rapid detection of five genetically modified soybean lines by multiplex PCR method. Soybean Science, 2016, 35(6): 1002-1007. (in Chinese)
[33]
SHIN M K, JEON S M, KOO Y E. Detection method for genetically modified potato using an ultra-fast PCR system. Food Science and Biotechnology, 2023, 32: 1185-1191.
[34]
高鸿飞, 翟杉杉, 吴刚, 武玉花, 李俊, 郑云曦, 汤敏, 杨瑶, 付伟. 一种用于快速直接二重PCR扩增的处理液、扩增体系及试剂盒[P]: CN114958989 B. (2022-08-30) [2024-07-03].
GAO H F, ZHAI S S, WU G, WU Y H, LI J, ZHENG Y X, TANG M, YANG Y, FU W. A processing solution, amplification system, and reagent kit for rapid direct duplex PCR amplification[P]: CN114958989 B. (2022-08-30) [2024-07-03]. (in Chinese)
[35]
SAVINI C, MAZZARA M, MUNARA B, KRAYSA J. Event-specific method for the quantification of soybean MON87708 using real-time PCR. Validation report and validated method. Online Publication, 2013, doi: 10.2788/90943.
[36]
STUDER E, RHYNER C, LUTHY J, HUBNER P. Quantitative competitive PCR for the detection of genetically modified soybean and maize. European Food Research and Technology, 1998, 207(3): 207-213.
[37]
农业部2031号公告-8-2013. 转基因植物及其产品成分检测大豆内标准基因定性PCR方法. 北京: 中国农业出版社, 2013.
Announcement by the Ministry of Agriculture No. 2031-8-2013. Detection of genetically modified plants and derives products target-taxon specific qualitative PCR method for soybean. Beijing: China Agriculture Press, 2013. (in Chinese)
[38]
HIRD H, POWELL J, JOHNSON M L, OEHLSCHLAGER S. Determination of percentage of RoundUp ready soya in soya flour using real-time polymerase chain reaction: Interlaboratory study. Journal of AOAC International, 2003, 86: 66-71.

pmid: 12607742
[39]
ZHANG H W, MORRISON S, TANG Y W. Multiplex polymerase chain reaction tests for detection of pathogens associated with gastroenteritis. Clinics in Laboratory Medicine, 2015, 35(2): 461-486.

doi: 10.1016/j.cll.2015.02.006 pmid: 26004652
[40]
HUANG H S, TSAI C L, CHANG J, HSU T C, LIN S, LEE C C. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: Systematic review and meta-analysis. Clinical Microbiology and Infection, 2018, 24(10): 1055-1063.
[41]
付伟, 魏霜, 龙阳, 赵晖, 乾义柯, 林春贵, 黄帅, 吴希阳, 朱水芳. 二重荧光定量PCR检测转基因大豆DAS81419. 植物检疫, 2016, 30(5): 58-62.
FU W, WEI S, LONG Y, ZHAO H, QIAN Y K, LIN C G, HUANG S, WU X Y, ZHU S F. Multiplex real-time PCR for the detection of genetically modified soybean DAS81419. Plant Quarantine, 2016, 30(5): 58-62. (in Chinese)
[42]
王凤军, 叶素丹, 陈冠武, 包永华. 转基因大豆及其制品二重荧光定量PCR的建立与验证. 食品工业科技, 2018, 39(8): 236-239, 271.
WANG F J, YE S D, CHEN G W, BAO Y H. Establishment and verified of a duplex fluorescence quantitative PCR for screening of genetically modified soybeans and products. Science and Technology of Food Industry, 2018, 39(8): 236-239, 271. (in Chinese)
[43]
HOORFAR J, MALORNY B, ABDULMAWJOOD A, COOK N, WAGNER M, FACH P. Practical considerations in design of internal amplification controls for diagnostic PCR assays. Journal of Clinical Microbiology, 2004, 42(5): 1863-1868.

doi: 10.1128/JCM.42.5.1863-1868.2004 pmid: 15131141
[44]
王春平, 张万松, 陈翠云, 张新友, 赵虹, 郭天财, 霍晓妮, 汤其林, 尹海庆. 中国种子生产程序的革新及种子质量标准新体系的构建. 中国农业科学, 2005, 38(1): 163-170.
WANG C P, ZHANG W S, CHEN C Y, ZHANG X Y, ZHAO H, GUO T C, HUO X N, TANG Q L, YIN H Q. Innovation of the seed production procedures and establishment of corresponding seed quality criteria in China. Scientia Agricultura Sinica, 2005, 38(1): 163-170. (in Chinese)
[1] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[2] GUO Lei, HUANG ChenYan, SONG HongFeng, SHEN ZhiJun, ZHANG BinBin, MA RuiJuan, SUN Meng, HE Xin, YU MingLiang. Screening, Compounding and Safety Evaluation of Herbicides Suitable for Peach Nursery [J]. Scientia Agricultura Sinica, 2024, 57(9): 1734-1747.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[5] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[6] WEI NaiCui, TAO JinBo, YUAN MingYang, ZHANG Yu, KAI MengXiang, QIAO Ling, WU BangBang, HAO YuQiong, ZHENG XingWei, WANG JuanLing, ZHAO JiaJia, ZHENG Jun. Seedling Characterization and Genetic Analysis of Low Phosphorus Tolerance in Shanxi Varieties [J]. Scientia Agricultura Sinica, 2024, 57(5): 831-845.
[7] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[8] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[9] LI YiYang, WANG Long, QIAN Chen, LI Jing, LIN GuoBing, QU WenTing, WANG Yan, LIN YaoWei, HUANG YiHang, ZHENG JingDong, YOU JingJing, ZUO QingSong. Effects of Planting Density on the Pod Characteristics and Exploring Strategie Analysis to Increase Yield in High-Yield Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(22): 4459-4472.
[10] MA YuHe, PU YuanYuan, WANG JinXiong, WU JunYan, YANG Gang, ZHAO CaiXia, MA Li, LIU LiJun, WANG WangTian, MIAO ChunQing, GUAN ZhouBo, FAN TingTing, WANG XingRong, MA Rui, LIAN YinTao, SUN WanCang. Analysis of Glucosinolate Content and Component in Brassica rapa L. [J]. Scientia Agricultura Sinica, 2024, 57(21): 4308-4327.
[11] ZHU YanTing, DANG Hao, NIU SiJie, LIN JingYi, YANG Hua, YANG Qiang, ZHANG Chong, CAI TieCheng, ZHUANG WeiJian, CHEN Hua. Screening of Interaction Proteins with AhSAP1 in Peanut Using the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(21): 4376-4390.
[12] GU YinHe, ZHAO WenQing, SHI DaiWei, HU Wei, WANG ShanShan, ZHOU ZhiGuo, WANG YouHua. Study on the Correlation Between Cold Resistance of Maize and Its Ability of Optimizing Sugar Composition at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(19): 3770-3783.
[13] YANG HaoRong, JIA Fan, HU Xu, MU Rong, LIU WeiNa, LIU ChangYun, WANG ShanZhi, SUN XianChao, MA GuanHua, CHEN GuoKang. BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(19): 3799-3809.
[14] WENG WenAn, XING ZhiPeng, HU Qun, WEI HaiYan, SHI YangJie, XI XiaoBo, LI XiuLi, LIU GuiYun, CHEN Juan, YUAN FengPing, MENG Yi, LIAO Ping, GAO Hui, ZHANG HongCheng. Effects of Unmanned Dry Direct-Seeded Mode on Yield, Grain Quality of Rice and Its Economic Benefits [J]. Scientia Agricultura Sinica, 2024, 57(17): 3350-3365.
[15] YANG LiDa, PENG XinYue, ZHU WenXue, ZHAO Jing, YUAN XiaoTing, LIN Ping, LUO Kai, LI YiLing, LUO ChunMing, LI YuZe, YANG WenYu, YONG TaiWen. Effects of Straw Returning and Irrigation Methods on Seedling Emergence and Growth in Soybean and Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(17): 3366-3383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!