Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3116-3126.doi: 10.3864/j.issn.0578-1752.2024.16.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Effects of the 1BL·1RS Chromosome on Wheat Yield and Quality-Related Traits

ZHAO ZhuoChao(), CAO HaoTian(), ZHOU ZiXin, QU JiaLe, LI Ze, XU MingYang, YANG QiWei, ZHANG Bin, WANG NingZe, WU YongZhen, SUN Han, QIN Ran, ZHAO ChunHua(), CUI Fa()   

  1. College of Agriculture, Ludong University/Yantai Key Laboratory of Crop Molecular Breeding for High Yield, Stress Resistance and Efficient Cultivation, Yantai 264025, Shandong
  • Received:2024-02-04 Accepted:2024-03-28 Online:2024-08-16 Published:2024-08-27
  • Contact: ZHAO ChunHua, CUI Fa

Abstract:

【Objective】1BL·1RS translocation lines are widely used in wheat breeding programs. The genetic effects of 1BL·1RS on yield and quality related traits will be characterized under different backgrounds, and its application in breeding programs will be evaluated. The study will provide therotical references for the selection of high-yield and high-quality wheat varieties.【Method】 The natural mapping population comprised by 244 varieties/advanced lines and the 188 recombinant inbred lines (KJ-RIL-F8) derived from the cross between Kenong9204 (KN9204) and Jing411 (J411) were used in this study. Their genotypes were detected by the 1RS diagnostic markers. Combining with the phenotypic values, the genetic effects of 1BL·1RS translocation on yield and quality were characterized. The selection and utilization of 1BL·1RS translocation in breeding programs were clarified by analyzing its proportion in the approved varieties among different decades and cultivate locations.【Result】Of the 188 KJ-RILs, 74 were 1BL·1RS translocation lines. The yield-related traits analysis showed that, under both high and low nitrogen conditions, the 1BL·1RS translocation lines significantly prolonged the heading date, increased grain nitrogen content ratio, increased flag leaf length and flag leaf area; while it significantly reduced kernel number per spike. The 1BL·1RS translocation had no significant effect on the spikes number per plant, thousand kerner weight or flag leaf width. Under both high nitrogen and low nitrogen conditions, 1BL·1RS translocation could significantly increase water absorption rate, wet gluten content, protein content and grain hardness; it had no significant effect on testweight, tractility or sedimentation value. Of the 244 varieties/advanced lines in the natural population, 76 were 1BL·1RS translocation lines. The 1BL·1RS translocation could significantly increase kernel number per spike, spike length and spikelet number, but it could significantly reduce plant height. However, it had no significant effect on spikes number per plant, thousand kerner weight, flag leaf length, flag leaf width or flag leaf area. The 244 varieties/advanced lines in the natural mapping population were classified and grouped according to wheat cultivation locations and variety certification time. The results showed that there were significant differences in the proportion of 1BL·1RS among different wheat cultivation locations. The proportion of the 1BL·1RS translocation lines began to increase from the 1990s in breeding programs.【Conclusion】There is no significant difference for the effects of 1BL·1RS translocation on yield and quality traits under high and low nitrogen conditions. The 1BL·1RS translocation showed inconsistent effects on yield related traits in the KJ-RIL mapping population and the natural mapping population, probably due to the different genetic backgrounds among them.

Key words: wheat, 1BL·1RS translocation line, yield traits, quality traits, genetic effect

Table 1

Primer information of the 1RS and 1BS diagnostic markers"

分子标记名称
Molecular marker name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
参考文献
References
Sec-1b GTTTGCTGGGGAATTATTTGT CCTCATCTTTGTCCTCGCC [18]
ω-Sec-P3 CCTTCCTCATCTTTGTCCTC GCTCTGGTCTCTGGGGTTGT [19]
Iag95 CTCTGTGGATAGTTACTTGATCGA CCTAGAACATGCATGGCTGTTACA [20]
Glu-B3 GGTACCAACAACAACAACCC GTTGCTGCTGAGGTTGGTTC [21]

Table 2

Two factor analysis of variance for yield traits based on 188 KJ-RILs"

变异来源
Source of variation
F的显著性 The significance of F
环境 Environment 基因型 1BL·1RS vs.1B 环境×基因型 Env×1BL·1RS vs.1B
自由度 df 7 1 7
抽穗期 Heading date 12386.51** 47.79** 2.69**
单株穗数 Spikes number per plant 487.67** 1.06 0.27
千粒重 Thousand kerner weightt 101.85** 1.23 2.32*
穗粒数 Kernel number per spike 199.85** 37.36** 2.34*
旗叶长 Flag leaf length 490.72** 19.29** 2.95**
旗叶宽 Flag leaf width 177.52** 0.01 1.71
旗叶面积 Flag leaf area 476.34** 3.98* 2.92**
籽粒含氮比 Grain nitrogen content ratio 250.76** 22.73** 0.38

Table 3

The effect of 1BL·1RS chromosome on yield related traits in 188 the KJ-RILs"

性状
Trait
地点Location E1 E2 E3 E4 BLUE
1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS
抽穗期
Heading date (d)
LN 209.97b 210.35a 214.23b 214.76a 225.78a 225.61a 192.31b 193.06a 210.55b 210.94a
HN 211.40a 211.70a 212.98b 213.37a 226.60a 226.61a 192.82b 193.82a 210.93b 211.34a
籽粒含氮比
Grain nitrogen content ratio (%)
LN 1.96a 1.99a 1.35b 1.58a 2.08b 2.14a / / 2.14b 2.18a
HN 2.03a 2.08a 2.39b 2.45a 2.53b 2.58a 2.56a 2.63a 2.52b 2.56a
旗叶长
Flag leaf length (cm)
LN 12.94b 13.69a 14.36b 15.10a 15.41a 15.45a 17.63a 17.99a 15.18b 15.55a
HN 15.82b 16.29a 19.34b 20.03a 18.99a 19.13a 18.42a 18.38a 18.22b 18.48a
旗叶面积
Flag leaf area (cm2)
LN 12.32b 13.3a 15.96b 17.13a 18.55a 18.26b 23.34a 23.80a 17.85a 18.31a
HN 16.73b 17.49a 25.30b 26.93a 25.04a 25.04a 23.87a 23.52a 22.99a 23.46a
穗粒数
Kernel number per spike
LN 35.62a 35.49a 45.82a 45.83a 43.78a 43.31b 39.45a 36.28b 41.54a 40.38b
HN 29.86a 29.43a 44.98a 45.37a 49.25a 47.31b 40.04a 36.69b 41.09a 39.59b

Table 4

Two factor analysis of variance for quality traits based on the 188KJ-RILs"

变异来源
Source of variation
F的显著性 The significance of F
环境 Environment 基因型 1BL·1RS vs.1B 环境×基因型 Env×1BL·1RS vs.1B
自由度 df 7 1 7
湿面筋含量 Wet gluten content 367.09** 78.73** 1.07
吸水率 Water absorption rate 34.50** 98.31** 2.11*
蛋白质含量 Protein content 425.85** 69.79** 1.29
籽粒硬度 Grain Hardness 28.86** 12.62** 1.54
容重 Testweight 39.25** 0.94 1.24
延展性 Tractility 274.17** 2.53 0.44
沉降值 Sedimentation value 86.30** 0.22 1.13

Table 5

The effect of 1BL·1RS chromosome on quality related traits in the 188 KJ-RILs"

性状
Trait
地点Location E1 E2 E3 E4 BLUE
1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS
蛋白质含量
Protein content (%)
LN 14.55a 14.63a 12.55b 12.94a 13.04b 13.52a 15.65b 16.07a 13.74b 14.05a
HN 11.97a 12.30a 14.62b 14.89a 15.34b 15.69a 15.59b 16.01a 14.52b 14.82a
吸水率
Water absorption rate (%)
LN 58.77a 58.98a 55.95b 56.77a 57.40b 58.97a 59.48a 60.02a 57.68b 58.50a
HN 57.71a 58.03a 56.71b 57.53a 57.34b 58.80a 59.33a 60.04a 57.62b 58.51a
湿面筋含量
Wet gluten content (%)
LN 31.99a 32.29a 27.26b 28.33a 28.26b 29.48a 34.48b 35.50a 29.99b 30.83a
HN 26.23b 27.04a 32.28b 32.98a 33.71b 34.68a 34.36b 35.37a 31.96b 32.73a
籽粒硬度
Grain hardness (%)
LN 65.93a 66.03a 61.49a 62.44a 61.04b 62.47a 61.76a 61.07a 62.77a 63.31a
HN 65.00a 65.26a 61.48a 61.98a 65.40b 66.97a 61.60a 61.34a 62.97a 63.53a

Table 6

Two factor analysis of variance for yield traits based on the natural mapping populations with 244 varieties or advanced lines"

变异来源
Source of variation
F的显著性 The significance of F
环境 Environment 基因型 1BL·1RS vs.1B 环境×基因型 Env×1BL·1RS vs.1B
自由度 df 4 1 4
单株穗数 Spikes number per plant 242.11** 1.79 2.95*
千粒重 Thousand kerner weight 282.12** 1.51 2.03
穗粒数 Kernel number per spike 69.93** 10.97** 0.78
旗叶长 Flag leaf length 95.77** 0.11 0.30
旗叶宽 Flag leaf width 262.55** 1.86 1.01
旗叶面积 Flag leaf area 203.93** 0.21 0.19
穗长 Spike length 80.23** 10.07** 0.55
株高 Plant height 25.56** 9.83** 0.18
小穗数 Spikelet number 147.50** 6.50* 0.85

Table 7

The effect of 1BL·1RS chromosome on yield related traits in the natural mapping populations with 244 varieties or advanced lines"

性状
Trait
E1 E2 E3 E4 E5 BLUE
1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS 1B 1BL·1RS
穗粒数
Kernel number per spike
40.91b 43.00a 51.22a 52.63a 53.46a 54.78a 49.07a 49.30a 49.86b 52.43a 48.05b 49.35a
穗长
Spike length (cm)
8.21a 8.40a 9.91a 10.24a 10.67a 10.75a 9.92a 10.28a 10.40b 10.84a 9.67b 9.96a
株高
Plant height (cm)
74.34a 71.20a 86.90a 85.56a 86.06a 83.01a 84.25a 81.59a 85.97a 82.60b 82.80a 80.60a
小穗数
Spikelet number
15.08a 15.45a 18.88a 18.99a 19.35a 19.38a 18.84b 19.45a 18.57a 18.88a 26.60a 27.36a

Fig. 1

The utilization of 1BL·1RS in breeding programs A: Distribution of the 244 cultivated varieties (advanced lines) in different regions; B: The selection and utilization of 1BL·1RS in china and abroad; C: The selection and utilization of 1BL·1RS in domestic wheat regions; D: The selection and utilization of 1BL·1RS in different decades"

[1]
贾子苗, 邱玉亮, 林志珊, 王轲, 叶兴国. 利用近缘种属优良基因改良小麦研究进展. 作物杂志, 2021(2): 1-14.
JIA Z M, QIU Y L, LIN Z S, WANG K, YE X G. Research progress on wheat improvement by using desirable genes from its relative species. Crop, 2021(2): 1-14. (in Chinese)
[2]
曹亚萍, 武银玉, 刘博, 范绍强. 小麦异源易位系诱致方法及应用研究进展. 植物遗传资源学报, 2022, 23(4): 943-953.

doi: 10.13430/j.cnki.jpgr.20220114001
CAO Y P, WU Y Y, LIU B, FAN S Q. Progress on induction and application of wheat alien chromosome translocation lines. Journal of Plant Genetic Resources, 2022, 23(4): 943-953. (in Chinese)
[3]
LI M J, LI Y Q, ZHANG N, SHI Z L. Cloning of the ω-secalin gene family in a wheat 1BL/1RS translocation line using BAC clone sequencing. Electronic Journal of Biotechnology, 2016, 21: 1-8.
[4]
任天恒, 陈放, 张怀琼, 晏本菊, 任正隆. 1RS·1BL易位在川农号系列小麦新品种选育中的作用. 麦类作物学报, 2011, 31(3): 430-436.
REN T H, CHEN F, ZHANG H Q, YAN B J, REN Z L. Application of 1RS·1BL translocation in the breeding of “Chuannong” series wheat cultivars. Journal of Triticeae Crops, 2011, 31(3): 430-436. (in Chinese)
[5]
WIESER H, KIEFFER R, LELLEY T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. Journal of the Science of Food and Agriculture, 2000, 80(11): 1640-1647.
[6]
REN T H, REN Z L, YANG M Y, YAN B J, TAN F Q, FU S L, TANG Z X, LI Z. Novel source of 1RS from Baili rye conferred high resistance to diseases and enhanced yield traits to common wheat. Molecular Breeding, 2018, 38(8): 101.
[7]
唐昊, 李治, 杨靖, 任天恒, 唐宗祥, 符书兰, 晏本菊, 任正隆. 1RS·1BL易位染色体对小麦品质特性及其地域稳定性的影响. 麦类作物学报, 2015, 35(8): 1050-1056.
TANG H, LI Z, YANG J, REN T H, TANG Z X, FU S L, YAN B J, REN Z L. Effect of 1RS·1BL translocation chromosome on wheat quality traits and their stability in different eccological regions. Journal of Triticeae Crops, 2015, 35(8): 1050-1056. (in Chinese)
[8]
朱保磊, 陈宏, 许娜丽, 尹志刚, 刘祥臣, 邹奎, 张波, 盛奥莹, 陈杰, 祝新杰, 李杰, 石守设. 1BL/1RS易位系对小麦产量性状及品质性状的影响. 分子植物育种, [2024-03-26]. http://kns.cnki.net/kcms/detail/46.1068.s.20230531.1625.024.html.
ZHU B L, CHEN H, XU N L, YIN Z G, LIU X C, ZOU K, ZHANG B, SHENG A Y, CHEN J, ZHU X J, LI J, SHI S S. The effects of 1BL/1RS translocation lines on yield and quality traits in wheat. Molecular Plant Breeding, [2024-03-26]. http://kns.cnki.net/kcms/detail/46.1068.s.20230531.1625.024.html. (in Chinese)
[9]
ZHAO C H, CUI F, WANG X Q, SHAN S C, LI X F, BAO Y G, WANG H G. Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics. Field Crops Research, 2012, 127: 79-84.
[10]
XYNIAS I N, TASIOS I E, KORPETIS E G, PANKOU C, AVDIKOS I, MAVROMATIS A G. Effect of the 1BL.1RS wheat-rye chromosomal translocation on yield potential in bread wheat. Agriculture and Forestry, 2020, 66(1): 15-21.
[11]
黄莘寓. 四川“早播早熟型”小麦新品种(系)1BL·1RS易位系检测及农艺性状分析[D]. 雅安: 四川农业大学, 2023.
HUANG X Y. Detection of 1BL·1RS translocation lines and analysis of agronomic traits in a new "early sowing and early maturing" wheat variety (line) from Sichuan[D]. Yaan: Sichuan Agricultural University, 2023. (in Chinese)
[12]
马小乐, 陈倩, 汪军成, 姚立蓉, 孟亚雄, 李葆春, 杨轲, 司二静, 刘露露, 王化俊, 尚勋武. 甘肃省小麦品种(系)HMW-GS和1BL/1RS易位系测定及其对品质的影响. 甘肃农业大学学报, 2020, 55(2): 68-75.
MA X L, CHEN Q, WANG J C, YAO L R, MENG Y X, LI B C, YANG K, SI E J, LIU L L, WANG H J, SHANG X W. Determination of HMW-GS and 1BL/1RS translocation lines of wheat varieties of Gansu Province and the effects on quality. Journal of Gansu Agricultural University, 2020, 55(2): 68-75. (in Chinese)
[13]
王红梅, 厚毅清, 欧巧明, 陈玉梁, 石有太. 甘肃小麦种质资源1BL/1RS易位系和HMW-GS分子检测及品质性状分析. 农业现代化研究, 2015, 36(3): 494-500.
WANG H M, HOU Y Q, OU Q M, CHEN Y L, SHI Y T. Gluten quality analysis with molecular markers of 1BL/1RS translocation line and HMW-GS in Gansu wheat germplasms. Research of Agricultural Modernization, 2015, 36(3): 494-500. (in Chinese)
[14]
FAN X L, CUI F, JI J, ZHANG W, ZHAO X Q, LIU J J, MENG D Y, TONG Y P, WANG T, LI J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Frontiers in Plant Science, 2019, 10: 187.

doi: 10.3389/fpls.2019.00187 pmid: 30863417
[15]
ZHANG N, FAN X L, CUI F, ZHAO C H, ZHANG W, ZHAO X Q, YANG L J, PAN R Q, CHEN M, HAN J, JI J, LIU D C, ZHAO Z W, TONG Y P, ZHANG A M, WANG T, LI J M. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield- related traits. Theoretical and Applied Genetics, 2017, 130(6): 1235-1252.
[16]
FAN X L, CUI F, ZHAO C H, ZHANG W, YANG L J, ZHAO X Q, HAN J, SU Q N, JI J, ZHAO Z W, TONG Y P, LI J M. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Molecular Breeding, 2015, 35(1): 24.
[17]
CUI F, FAN X L, CHEN M, ZHANG N, ZHAO C H, ZHANG W, HAN J, JI J, ZHAO X Q, YANG L J, ZHAO Z W, TONG Y P, WANG T, LI J M. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theoretical and Applied Genetics, 2016, 129(3): 469-484.

doi: 10.1007/s00122-015-2641-7 pmid: 26660466
[18]
DE FROIDMONT D. A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR. Journal of Cereal Science, 1998, 27(3): 229-232.
[19]
CHAI J F, ZHOU R H, JIA J Z, LIU X. Development and application of a new codominant PCR marker for detecting 1BL·1RS wheat-rye chromosome translocations. Plant Breeding, 2006, 125(3): 302-304.
[20]
MAGO R, SPIELMEYER W, LAWRENCE G, LAGUDAH E, ELLIS J, PRYOR A. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theoretical and Applied Genetics, 2002, 104(8): 1317-1324.

doi: 10.1007/s00122-002-0879-3 pmid: 12582587
[21]
VAN CAMPENHOUT S, VANDER STAPPEN J, SAGI L, VOLCKAERT G. Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theoretical and Applied Genetics, 1995, 91(2): 313-319.

doi: 10.1007/BF00220893 pmid: 24169779
[22]
KIM W, JOHNSON J W, BAENZIGER P S, LUKASZEWSKI A J, GAINES C S. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Science, 2004, 44(4): 1254-1258.
[23]
REN T H, CHEN F, YAN B J, ZHANG H Q, REN Z L. Genetic diversity of wheat-rye 1BL·1RS translocation lines derived from different wheat and rye sources. Euphytica, 2012, 183(2): 133-146.
[24]
胡阳杰, 田芳慧, 宋全昊, 李法计, 孙道杰. 小麦1BL/1RS和7DL·7Ag易位对小麦主要农艺性状的遗传效应. 麦类作物学报, 2012, 32(4): 610-615.
HU Y J, TIAN F H, SONG Q H, LI F J, SUN D J. Genetic effects of chromosome translocations 1BL/1RS and 7DL·7Ag on the main traits of common wheat. Journal of Triticeae Crops, 2012, 32(4): 610-615. (in Chinese)
[25]
LIU H, TANG H P, DING P Y, MU Y, HABIB A, LIU Y X, JIANG Q T, CHEN G Y, KANG H Y, WEI Y M, ZHENG Y L, LAN X J, MA J. Effects of the 1BL/1RS translocation on 24 traits in a recombinant inbred line population. Cereal Research Communications, 2020, 48(2): 225-232.
[26]
魏育明, 郑有良, 周永红, 刘登才, 兰秀锦, 周荣华, 贾继增. RFLP标记揭示的1RS/1BL易位系对小麦农艺性状的影响. 西南农业学报, 1999, 12(S2): 105-110.
WEI Y M, ZHENG Y L, ZHOU Y H, LIU D C, LAN X J, ZHOU R H, JIA J Z. The effects of chromosome 1RS/1BL translocation on the agronomic characters of common wheat revealed by RFLP markers. Southwest China Journal of Agricultural Sciences, 1999, 12(S2): 105-110. (in Chinese)
[27]
董东, 韦胜利, 徐云峰, 李洪杰, 周阳. 1BL/1RS易位染色体在小麦育种中的应用效果分析. 作物杂志, 2011(4): 109-112.
DONG D, WEI S L, XU Y F, LI H J, ZHOU Y. Study on effects of 1BL/1RS on wheat breeding. Crops, 2011(4): 109-112. (in Chinese)
[28]
刘建军, 何中虎, R J Pena, 赵振东. 1BL/1RS易位对小麦加工品质的影响. 作物学报, 2004, 30(2): 149-153.
LIU J J, HE Z H, PENA R, ZHAO Z D. Effect of 1BL/1RS translocation on grain quality and noodle quality in bread wheat. Acta Agronomica Sinica, 2004, 30(2): 149-153. (in Chinese)
[29]
李佳彬, 胡阳杰, 王宇娟, 宋全昊, 田芳慧, 李法计, 孙道杰. 小麦易位系1BL/1RS×7DL. 7Ag的F2分子检测及其农艺和品质性状分析. 西北植物学报, 2012, 32(11): 2182-2189.
LI J B, HU Y J, WANG Y J, SONG Q H, TIAN F H, LI F J, SUN D J. F2 molecular detection and the agronomic and quality traits of chromosome translocations 1BL/1RS × 7DL.7Ag in common wheat. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(11): 2182-2189. (in Chinese)
[30]
MORENO-SEVILLA B, BAENZIGER P S, SHELTON D R, GRAYBOSCH R A, PETERSON C J. Agronomic performance and end-use quality of 1B vs. 1BL/1RS genotypes derived from winter wheat ‘rawhide’. Crop Science, 1995, 35(6): 1607-1612.
[31]
魏育明, 郑有良, 颜泽洪, 周永红, 兰秀锦. T1BL.1RS易位染色体对小麦籽粒蛋白质含量的影响. 四川农业大学学报, 2000, 18(1): 4-6.
WEI Y M, ZHENG Y L, YAN Z H, ZHOU Y H, LAN X J. The effects of T1BL.1RS translocation chromosome on grain protein content in wheat. Journal of Sichuan Agricultural University, 2000, 18(1): 4-6. (in Chinese)
[32]
BURNETT C J, LORENZ K J, CARVER B F. Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica, 1995, 86(3): 159-166.
[33]
BORDES J, RAVEL C, JAUBERTIE J P, DUPERRIER B, GARDET O, HEUMEZ E, PISSAVY A L, CHARMET G, LE GOUIS J, BALFOURIER F. Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection. Theoretical and Applied Genetics, 2013, 126(3): 805-822.

doi: 10.1007/s00122-012-2019-z pmid: 23192671
[34]
李俊, 魏会廷, 杨粟洁, 李朝苏, 汤永禄, 胡晓蓉, 杨武云. 川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应. 作物学报, 2009, 35(12): 2167-2173.

doi: 10.3724/SP.J.1006.2009.02167
LI J, WEI H T, YANG S J, LI C S, TANG Y L, HU X R, YANG W Y. Genetic effects of the 1BS chromosome arm on the main agronomic traits inChuanmai 42. Acta Agronomica Sinica, 2009, 35(12): 2167-2173. (in Chinese)
[35]
赵春华. 小麦骨干亲本矮孟牛姊妹系基因组差异及1RS遗传效应分析[D]. 泰安: 山东农业大学, 2012.
ZHAO C H. Genomic difference and 1RS genetic effect analysis of sister lines of wheat backbone parents aimengniu[D]. Taian: Shandong Agricultural University, 2012. (in Chinese)
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] ZHOU Quan, LU QiuMei, ZHAO ZhangChen, WU ChenRan, FU XiaoGe, ZHAO YuJiao, HAN Yong, LIN HuaiLong, CHEN WeiLin, MOU LiMing, LI XingMao, WANG ChangHai, HU YinGang, CHEN Liang. Identification of Drought Resistance of 244 Spring Wheat Varieties at Seedling Stage [J]. Scientia Agricultura Sinica, 2024, 57(9): 1646-1657.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] YAN Wen, JIN XiuLiang, LI Long, XU ZiHan, SU Yue, ZHANG YueQiang, JING RuiLian, MAO XinGuo, SUN DaiZhen. Drought Resistance Evaluation of Synthetic Wheat at Grain Filling Using UAV-Based Multi-Source Imagery Data [J]. Scientia Agricultura Sinica, 2024, 57(9): 1674-1686.
[5] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[6] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[7] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[8] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[9] DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui. Research on the Mechanisms of Pre-Harvest Sprouting and Resistant Breeding in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1237-1254.
[10] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[11] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[12] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[13] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[14] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[15] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!