Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (6): 1091-1101.doi: 10.3864/j.issn.0578-1752.2024.06.006

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus

LUO LiDan(), CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen()   

  1. College of Plant Protection, Gansu Agricultural University/Biological Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou 730070
  • Received:2023-11-01 Accepted:2023-12-08 Online:2024-03-25 Published:2024-03-25
  • Contact: SONG LiWen

Abstract:

【Objective】 The objective of this study is to clarify the effect of high temperature on the trehalose transporter gene of Tetranychus truncatus, and to provide a theoretical basis for the green control of pests.【Method】 According to the transcriptome data of T. truncatus induced by high temperature, the CDS sequences and protein amino acid sequences of two trehalose transporter genes TtTret1-like and TtTret1 were obtained. Bioinformatics analysis of TtTret1-like and TtTret1 was carried out using analytical tools such as ExPASy, ProScale and MEGA. The expression characteristics of TtTret1-like and TtTret1 at different development stages and different high temperatures (38, 42, 46 and 50 ℃) were analyzed by qRT-PCR. The trehalose content of T. truncatus at different high temperatures was determined by microanalysis. RNA interference (RNAi) technique was used to silence TtTret1-like and TtTret1, and to explore their functions in coping with high temperature.【Result】 Bioinformatics analysis showed that the full-length CDS of TtTret1-like and TtTret1 was 1 389 and 1 569 bp, respectively, encoding 463 and 523 amino acids. The predicted protein molecular weights were 50 189.03 and 57 358.10 Da, and the isoelectric points were 8.87 and 8.70, respectively. TtTret1-like and TtTret1 are both basic amino acids and hydrophobic amino acids, belonging to unstable proteins. The secondary structure is a spiral and coiled structure. Both trehalose transporters have conserved domains and 12 transmembrane domains of major facilitator superfamily (MFS). The amino acid sequence similarity and phylogenetic analysis showed that TtTret1-like and TtTret1 were highly consistent with the trehalose transporter sequences of other arachnids, especially with T. urticae. The expression level of TtTret1-like was higher in egg, larva and adult stages. TtTret1 was highly expressed in larva stage. With the increase of treatment temperature, the expression level of TtTret1-like increased, and reached the highest level at 50 ℃. However, with the increase of treatment temperature, the expression level of TtTret1 increased first and then decreased, reaching the maximum at 42 ℃. The trehalose content in T. truncatus increased significantly after high temperature stress. After silencing TtTret1-like and TtTret1 for 48 h, the trehalose content in T. truncatus increased, but the trehalose content in hemolymph decreased. The survival rates of T. truncatus were 11% and 46.67% after treated at 50 ℃ for 2 h and then recovered for 96 h, which were significantly lower than those of the control group.【Conclusion】 It is hypothesized that TtTret1-like and TtTret1 in T. truncatus play an important role in their responses to high temperature stress.

Key words: Tetranychus truncatus, high temperature stress, trehalose, trehalose transporter, RNA interference (RNAi)

Table 1

Primers used in this study"

基因Gene 引物序列Primer sequence (5′-3′) 引物用途Usage of primers
TtTret1-like F: CGGAACAGCACTTGGTTACT 实时荧光定量PCR
qRT-PCR
TtTret1-like R: GCGACAAATGGGACAGAGAG
TtTret1 F: GGCAACCAATGATTCTCAGC
TtTret1 R: AGCACTTCCTACGGTCACA
Actin F: GCCATCCTTCGTTTGGATTTGGCT 内参基因
Internal reference gene
Actin R: TCTCGGACAATTTCTCGCTCAGCA
RPS18 F: ACGTGCTGGTGAACTTACCGAAGA
RPS18 R: TGCCTATTCAAGAACCAAAGTGGG
dsTtTret1-like-T7 F: T7-TCGGAACAGCACTTGGTTAC dsRNA合成
dsRNA synthesis
dsTtTret1-like-T7 R: T7-CTGGAGGAGTTTGTCGGAAA
dsTtTret1-T7 F: T7-TGTGACCGTAGGAAGTGCTT
dsTtTret1-T7 R: T7-CTGGAAGGACGAACGAGGTA
dsGFP-T7 F: T7-CAGTTCTTGTTGAATTAGATG
dsGFP-T7 R: T7-TTTGGTTTGTCTCCCATGATG
T7 sequence TAATACGACTCACTATAGGG

Fig. 1

Bioinformatics analysis of TtTret1-like and TtTret1"

Fig. 2

Phylogenetic analysis of TtTret1-like and TtTret1"

Fig. 3

Relative expression level of TtTret1-like and TtTret1 at different developmental stages of T. truncates Single-factor ANOVA test was used. Different lowercase letters on the column indicated significant difference (P<0.05). The same as below"

Fig. 4

Relative expression level of TtTret1-like and TtTret1 at different high temperatures"

Fig. 5

Trehalose content of T. truncatus at different high temperatures"

Fig. 6

Effects of interference with TtTret1-like and TtTret1 on gene expression and trehalose content in T. truncates"

Fig. 7

Effects of 50 ℃ extreme temperature on the survival of T. truncatus adults after silencing TtTret1-like and TtTret1"

[1]
宋丽雯, 张君霞, 杨顺义, 沈慧敏. 截形叶螨抗哒螨灵种群抗性遗传方式的研究. 植物保护, 2016, 42(1): 112-115.
SONG L W, ZHANG J X, YANG S Y, SHEN H M. Resistance inheritance patterns to pyridaben in Tetranychus truncatus. Plant Protection, 2016, 42(1): 112-115. (in Chinese)
[2]
王少丽, 张友军, 吴青君, 谢文, 徐宝云. 京冀地区蔬菜叶螨优势种类鉴定. 环境昆虫学报, 2014, 36(4): 481-486.
WANG S L, ZHANG Y J, WU Q J, XIE W, XU B Y. Dominant species identification of spider mites on vegetables in some areas in Beijing and Hebei. Journal of Environmental Entomology, 2014, 36(4): 481-486. (in Chinese)
[3]
常壮壮, 孙荆涛. 甘肃武威市凉州玉米产区截形叶螨对3种杀螨剂的敏感性测定. 玉米科学, 2021, 29(4): 110-114.
CHANG Z Z, SUN J T. Susceptibility of Tetranychus truncatus to three acaricides. Journal of Maize Sciences, 2021, 29(4): 110-114. (in Chinese)
[4]
郭燕飞. 寄主转换对四种叶螨的适合度影响[D]. 南京: 南京农业大学, 2018.
GUO Y F. Effects of host plant switch on fitness of four spider mite species[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[5]
刘大成. 极端高温对小菜蛾种群生长发育的影响[D]. 长沙: 湖南农业大学, 2019.
LIU D C. Effect of extreme high temperature on growth and development of Plutella xylostella (L.)[D]. Changsha: Hunan Agricultural University, 2019. (in Chinese)
[6]
马罡. 禾谷缢管蚜对温度梯度行为反应的研究[D]. 北京: 中国农业科学院, 2006.
MA G. Behavioural response of bird cherry-oat aphid, Rhopatosiphum padi, to temperature gradients[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)
[7]
马春森, 马罡, 赵飞. 气候变暖对麦蚜的影响. 应用昆虫学报, 2014, 51(6): 1435-1443.
MA C S, MA G, ZHAO F. Impact of global warming on cereal aphids. Chinese Journal of Applied Entomology, 2014, 51(6): 1435-1443. (in Chinese)
[8]
李娟, 李爽, 王冬梅, 季荣. 高温胁迫下西伯利亚蝗体内抗逆物质含量变化. 昆虫学报, 2014, 57(10): 1155-1161.
LI J, LI S, WANG D M, JI R. Changes in content of stress resistant substances in Gomphocerus sibiricus (Orthoptera: Acrididae) under high temperature stress. Acta Entomologica Sinica, 2014, 57(10): 1155-1161. (in Chinese)
[9]
王林玲, 周泽扬. 昆虫耐热机制的研究进展. 安徽农业科学, 2008, 36(16): 6783, 6842.
WANG L L, ZHOU Z Y. Advance of research on the heat-proof mechanism of insects. Journal of Anhui Agricultural Sciences, 2008, 36(16): 6783, 6842. (in Chinese)
[10]
李慧, 郝德君, 徐天, 代鲁鲁. 高温胁迫对植食性昆虫影响研究进展. 南京林业大学学报(自然科学版), 2022, 46(6): 215-224.

doi: 10.12302/j.issn.1000-2006.202209041
LI H, HAO D J, XU T, DAI L L. The effects of heat stress on herbivorous insects: An overview and future directions. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(6): 215-224. (in Chinese)
[11]
HOTTIGER T, BOLLER T, WIEMKEN A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Letters, 1987, 220: 113-115.

doi: 10.1016/0014-5793(87)80886-4
[12]
TANG B, QIN Z, SHI Z K, WANG S, GUO X J, WANG S G, ZHANG F. Trehalase in Harmonia axyridis (Coleoptera: Coccinellidae): Effects on beetle locomotory activity and the correlation with trehalose metabolism under starvation conditions. Applied Entomology and Zoology, 2014, 49: 255-264.

doi: 10.1007/s13355-014-0244-4
[13]
FEOFILOVA E P, USOV A I, MYSYAKINA I S, KOCHKINA G A. Trehalose: Chemical structure, biological functions, and practical application. Microbiology, 2014, 83: 184-194.

doi: 10.1134/S0026261714020064
[14]
SALVUCCI M E, HENDRIX D L, WOLFE G R. Effect of high temperature on the metabolic processes affecting sorbitol synthesis in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 1999, 45: 21-27.

pmid: 12770392
[15]
GE L Q, JIANG Y P, XIA T, SONG Q S, STANLEY D, KUAI P, LU X L, YANG G Q, WU J C. Silencing a sugar transporter gene reduces growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Scientific Reports, 2015, 5: 12194.

doi: 10.1038/srep12194
[16]
TANG B, WANG S, WANG S G, WANG H J, ZHANG J Y, CUI S Y. Invertebrate trehalose-6-phosphate synthase gene: Genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 2018, 9: 30.

doi: 10.3389/fphys.2018.00030 pmid: 29445344
[17]
GARCÍA DE CASTRO A, TUNNACLIFFE A. Intracellular trehalose improves osmotolerance but not desiccation tolerance in mammalian cells. FEBS Letters, 2000, 487: 199-202.

pmid: 11150509
[18]
STAMBUK B U, PANEK A D, CROWE J H, CROWE L M, DE ARAUJO P S. Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1998, 1379: 118-128.
[19]
KIKAWADA T, SAITO A, KANAMORI Y, NAKAHARA Y, IWATA K, TANAKA D, WATANABE M, OKUDA T. Trehalose transporter 1, a facilitated and high capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(28): 11585-11590.
[20]
ZOU Y, XIONG W H, YANG Y F, AI H, ZOU Z Y, XIN T R, XIA B, ZOU Z W. Response of trehalose transporter gene in Aleuroglyphus ovatus (Troupeau) under low temperature stress. Zoosymposia, 2022, 22: 258.

doi: 10.11646/zoosymposia.22.1
[21]
LIU K, DONG Y M, HUANG Y Z, RASGON J L, AGRE P. Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(43): 17504-17509.
[22]
ZHOU H L, LEI G K, CHEN Y T, YOU M S, YOU S J. PxTret1-like affects the temperature adaptability of a cosmopolitan pest by altering trehalose tissue distribution. International Journal of Molecular Sciences, 2022, 23(16): 9019.

doi: 10.3390/ijms23169019
[23]
杨帅, 赵冰梅, 李广云, 胡素丽, 郭艳兰, 张建萍. 短时高温暴露对土耳其斯坦叶螨和截形叶螨的影响. 昆虫学报, 2013, 56(3): 276-285.
YANG S, ZHAO B M, LI G Y, HU S L, GUO Y L, ZHANG J P. Effects of brief exposure to high temperature on Tetranychus turkestani and T. truncatus (Acari: Tetranychidae). Acta Entomologica Sinica, 2013, 56(3): 276-285. (in Chinese)
[24]
王岩, 马纪, 刘小宁. 昆虫血淋巴的收集技术与方法. 昆虫知识, 2009, 46(1): 147-151.
WANG Y, MA J, LIU X N. Techniques and methods for collecting insect haemolymph. Chinese Bulletin of Entomology, 2009, 46(1): 147-151. (in Chinese)
[25]
SHI L, WEI P, WANG X Z, SHEN G M, ZHANG J, XIAO W, XU Z F, XU Q, HE L. Functional analysis of esterase TCE2 gene from Tetranychus cinnabarinus (Boisduval) involved in acaricide resistance. Scientific Reports, 2016, 6: 18646.

doi: 10.1038/srep18646
[26]
TANG B, YANG M M, SHEN Q D, XU Y X, WANG H J, WANG S G. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology, 2017, 137: 81-90.

doi: S0048-3575(16)30122-5 pmid: 28364808
[27]
LI Y, WANG S S, LIU Y K, LU Y T, ZHOU M, WANG S, WANG S G. The effect of different dietary sugars on the development and fecundity of Harmonia axyridis. Frontiers in Physiology, 2020, 11: 574851.

doi: 10.3389/fphys.2020.574851
[28]
YANG Z Z, XIA J X, PAN H P, GONG C, XIE W, GUO Z J, ZHENG H X, YANG X, YANG F S, WU Q J, WANG S L, ZHANG Y J. Genome-wide characterization and expression profiling of sugar transporter family in the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Frontiers in Physiology, 2017, 8: 322.

doi: 10.3389/fphys.2017.00322
[29]
SAIER M H. Genome archeology leading to the characterization and classification of transport proteins. Current Opinion in Microbiology, 1999, 2(5): 555-561.

pmid: 10508720
[30]
TELLIS M B, CHAUDHARI B Y, DESHPANDE S V, NIKAM S V, BARVKAR V T, KOTKAR H M, JOSHI R S. Trehalose transporter-like gene diversity and dynamics enhances stress response and recovery in Helicoverpa armigera. Gene, 2023, 862: 147259.

doi: 10.1016/j.gene.2023.147259
[31]
KANAMORI Y, SAITO A, HAGIWARA-KOMODA Y, TANAKA D, MITSUMASU K, KIKUTA S, WATANABE M, CORNETTE R, KIKAWADA T, OKUDA T. The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochemistry and Molecular Biology, 2010, 40(1): 30-37.

doi: 10.1016/j.ibmb.2009.12.006 pmid: 20035867
[32]
MA C S, MA G, PINCEBOURDE S. Survive a warming climate: Insect responses to extreme high temperatures. Annual Review of Entomology, 2021, 66: 163-184.

doi: 10.1146/ento.2021.66.issue-1
[33]
LIMMER S, WEILER A, VOLKENHOFF A, BABATZ F, KLÄMBT C. The Drosophila blood-brain barrier: Development and function of a glial endothelium. Frontiers in Neuroscience, 2014, 8: 365.
[34]
YOSHIDA M, MATSUDA H, KUBO H, NISHIMURA T. Molecular characterization of Tps1 and Treh genes in Drosophila and their role in body water homeostasis. Scientific Reports, 2016, 6: 30582.

doi: 10.1038/srep30582
[35]
马晓江, 张志虎, 王中, 张艳香, 陈静. 短时高温胁迫对双斑长跗萤叶甲雌虫游离氨基酸、海藻糖和可溶性糖的影响. 植物保护, 2018, 44(2): 111-115.
MA X J, ZHANG Z H, WANG Z, ZHANG Y X, CHEN J. Effects of brief exposure to high temperature on free amino acids, total sugar and trehalose of female adult Monolepta hieroglyphica (Motschulsky). Plant Protection, 2018, 44(2): 111-115. (in Chinese)
[36]
党英侨, 王小艺, 张彦龙, 魏可, 曹亮明. 白蜡窄吉丁成虫对短时高温的生理响应. 林业科学, 2023, 59(2): 112-120.
DANG Y Q, WANG X Y, ZHANG Y L, WEI K, CAO L M. Physiological responses of Agrilus planipennis adults to short-time high-temperature conditions. Scientia Silvae Sinicae, 2023, 59(2): 112-120. (in Chinese)
[37]
LEYRIA J, EL-MAWED H, ORCHARD I, LANGE A B. Regulation of a trehalose-specific facilitated transporter (tret) by insulin and adipokinetic hormone in Rhodnius prolixus, a vector of chagas disease. Frontiers in Physiology, 2021, 12: 624165.

doi: 10.3389/fphys.2021.624165
[38]
GUO Y Q, ZHANG Q, HU X, PANG C X, LI J L, HUANG J X. Mating stimulates the immune response and sperm storage-related genes expression in spermathecae of bumblebee (Bombus terrestris) queen. Frontiers in Genetics, 2021, 12: 795669.

doi: 10.3389/fgene.2021.795669
[39]
LI J X, CAO Z, GUO S, TIAN Z, LIU W, ZHU F, WANG X P. Molecular characterization and functional analysis of two trehalose transporter genes in the cabbage beetle, Colaphellus bowringi. Journal of Asia-Pacific Entomology, 2020, 23(3): 627-633.

doi: 10.1016/j.aspen.2020.05.011
[40]
於卫东, 潘碧莹, 邱玲玉, 黄镇, 周泰, 叶林, 唐斌, 王世贵. 两个褐飞虱海藻糖转运蛋白基因的结构及调控海藻糖代谢功能. 中国农业科学, 2020, 53(23): 4802-4812. doi: 10.3864/j.issn.0578-1752.2020.23.007.
YU W D, PAN B Y, QIU L Y, HUANG Z, ZHOU T, YE L, TANG B, WANG S G. The structure characteristics and biological functions on regulating trehalose metabolism of two NlTret1s in Nilaparvata lugens. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812. doi: 10.3864/j.issn.0578-1752.2020.23.007. (in Chinese)
[41]
KIKUTA S, NAKAMURA Y, HATTORI M, SATO R, KIKAWADA T, NODA H. Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 2015, 64: 60-67.

doi: 10.1016/j.ibmb.2015.07.015 pmid: 26226652
[1] ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720.
[2] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[3] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[4] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[5] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[6] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[7] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[8] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[9] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[10] ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns [J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
[11] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[12] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[13] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[14] GAO ChunHua,FENG Bo,CAO Fang,LI ShengDong,WANG ZongShuai,ZHANG Bin,WANG Zheng,KONG LingAn,WANG FaHong. Effects of Nitrogen Application Rate on Assimilate Accumulation, Transportation and Grain Yield in Wheat Under High Temperature Stress After Anthesis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4365-4375.
[15] GAO YingBo,ZHANG Hui,SHAN Jing,XUE YanFang,QIAN Xin,DAI HongCui,LIU KaiChang,LI ZongXin. Effects of Pre-Silking High Temperature Stress on Yield and Ear Development Characteristics of Different Heat-Resistant Summer Maize Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!