Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4483-4494.doi: 10.3864/j.issn.0578-1752.2024.22.008

• PLANT PROTECTION • Previous Articles     Next Articles

The Mechanisms of Mitochondrial Protein-Coding Genes ND6 and ATP6 in Regulating Cold Tolerance of Cryptolestes ferrugineus

YUAN GuoQing(), CHEN ErHu(), TANG PeiAn   

  1. College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province/Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing 210023
  • Received:2024-07-13 Accepted:2024-08-24 Online:2024-11-16 Published:2024-11-22
  • Contact: CHEN ErHu

Abstract:

【Background】Low temperatures can induce adaptive responses in ectothermic animals, the grain pest Cryptolestes ferrugineus has exhibited a remarkable adaptability to cold environment. Mitochondrial protein-coding genes are crucial for maintaining respiration metabolism and ATP synthesis in organisms, and they play various functions in insects. However, the role of these genes in cold adaptation is poorly understood.【Objective】The purpose of this study is to elucidate the roles of mitochondrial protein-coding genes in the formation of cold tolerance of C. ferrugineus.【Method】The cold tolerance of C. ferrugineus ST and CK populations was determined at a lethal low temperature (-20 ℃). The respiration rate and ATP content of C. ferrugineus ST and CK populations were measured using a CO2 detector and an ATP content assay kit. The relative expression levels of 13 mitochondrial protein-coding genes between the ST and CK populations were assessed by using RT-qPCR. RNA interference (RNAi) technology was employed to knock down the key mitochondrial protein-coding genes ND6 and ATP6 in C. ferrugineus, and then the expression levels of the remaining 12 mitochondrial protein-coding genes, respiration rate, ATP content, and changes in cold tolerance were explored after effective silencing of ND6 and ATP6.【Result】The cold tolerance of C. ferrugineus CK population was higher than that of the ST population, while the respiration rate and ATP content of the CK population were only 58.68% and 62.54% of those in the ST population, respectively. Additionally, the expression levels of 12 mitochondrial protein-coding genes (except ND3) in the CK population were significantly lower than those in the ST population. These results suggested a negative correlation between cold tolerance and physiological indicators (respiration rate, ATP content, and the expression levels of mitochondrial protein-coding genes). When the key mitochondrial protein-coding genes ND6 and ATP6 were effectively silenced via dsRNA feeding, the respiration rate and ATP content were significantly reduced, while cold tolerance in C. ferrugineus was significantly enhanced.【Conclusion】The mitochondrial protein-coding genes ND6 and ATP6 are involved in the formation of cold tolerance by regulating energy metabolism in C. ferrugineus.

Key words: Cryptolestes ferrugineus, cold tolerance, energy metabolism, mitochondrial protein-coding gene, RNA interference (RNAi)

Table 1

Primer sequences used for RT-qPCR in this study"

引物名称
Primer name
引物序列
Primer sequence (5′ to 3′)
产物长度
Product length (bp)
R2 扩增效率
Amplification efficiency (%)
ND1-F TAATGGGTTAGTTCAGCCTT 296 1.000 91.464
ND1-R AAATAGTTTGAGCAACAGCC
ND2-F TAGTATATGGCTAGGACTGGA 92 1.000 88.099
ND2-R TTAAGGCTGATTCTGATGGA
ND3-F TTGACCCTAAATCTACCGCA 219 0.993 102.414
ND3-R TGGCTCAGTTTAAGGCTCCT
ND4-F TGCTTATTCTTCTGTTGCTC 166 0.991 102.742
ND4-R ACTTCGTCTATGAGTTCGTT
ND4L-F TTAACTATAAGTGTATGTGAGGG 63 0.996 91.195
ND4L-R ATAATATAATCATTTCCATGC
ND5-F GCCCTTTCAACTTTAAGTCA 89 0.995 106.11
ND5-R TAAAGCCTTAAAGAGGGCAT
ND6-F TCACCCCTTATCTTTCGGAGT 188 0.999 90.76
ND6-R TGAAATTTTTCATTAGAGGCTACA
Cytb-F GAGGTGCCACAGTTATTAC 109 0.992 102.519
Cytb-R CGAGTTAATGTTGCGTTATC
COXI-F TGCTCATGGAGGATCTTCAG 122 0.994 102.676
COXI-R TTATACCTTGGGGCCGTATA
COXII-F CGTTCGTCCAATAATTGTTG 128 0.998 93.275
COXII-R AAGTCCTTCCGATTCCAG
COXIII-F CGCCGTTTACTATTGCTGAT 153 0.993 103.234
COXIII-R ACCCAAAATGGTGAGTTCTT
ATP6-F ATATTAGCCCATTTAGTCCCACA 115 0.998 93.255
ATP6-R CAGATAGCCGGACAGCCAAA
ATP8-F TTCCTCAAATAGCCCCTTTAAGT 50 0.997 97.458
ATP8-R AGTAAAATAGAAGAAAAGAGTTAAT
RPS13-F ATCCGTAAGCATTTGGAACG 162 0.997 91.571
RPS13-R AGCCACTAAGGCTGAAGCTG
EF1α-F CCAGGCATGGTAGTGACCTT 184 0.999 96.033
EF1α-R TTGGAGGGTTGTTTTTGGAG

Table 2

Primer sequences used for dsRNA synthesis in this study"

引物名称
Primer name
引物序列
Primer sequence (5′ to 3′)
dsND6-F gatcctaatacgactcactataggACCCCTTATCTTTCGGAGTTACA
dsND6-R ggatcctaatacgactcactataggGCGTAATGGGCCATATTTGATAT
dsATP6-F ggatcctaatacgactcactataggTTTCCTCATTTGACCCCTCA
dsATP6-R ggatcctaatacgactcactataggAATAGGCGGAGTTCCTTGTG
dsGFP-F ggatcctaatacgactcactataggATGGTGAGCAAGGGCGAGA
dsGFP-R ggatcctaatacgactcactataggTTACTTGTACAGCTCGTCCA

Table 3

Cold tolerance in ST and CK populations of C. ferrugineus"

试虫种群
Population
回归方程
Regression equation (y=)
LT50 (min)
(95%置信区间
95% CI)
R2
ST 6.695x-10.339 35.014 (24.759-43.426) 0.954
CK 8.445x-13.942 44.762 (40.762-48.638) 0.969

Fig. 1

Differences in respiration rate (A) and ATP content (B) between ST and CK populations of C. ferrugineus"

Fig. 2

The expression patterns of mitochondrial protein-coding genes in ST and CK populations of C. ferrugineus"

Fig. 3

The expression levels of target genes in C. ferrugineus following RNAi-mediated silencing of ND6 (A) and ATP6 (B)"

Fig. 4

The expression levels of 13 mitochondrial protein-coding genes in C. ferrugineus following RNAi-mediated silencing of ND6 (A) and ATP6 (B)"

Fig. 5

Changes of respiration rate (A) and ATP content (B) in C. ferrugineus after RNAi"

Fig. 6

Changes of cold tolerance in C. ferrugineus after RNAi"

[1]
COX P D, ATKINSON J E, BANNON K L, HATFIELD J. Studies of refuge-seeking behaviour and locomotory activity in Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae) using time-lapse video recordings. Journal of Stored Products Research, 1993, 29(4): 283-289.
[2]
JAGADEESAN R, NAYAK M K, DAWSON K, BYRNE V, COLLINS P J. Dietary media for mass rearing of rusty grain beetle, Cryptolestes ferrugineus (Stephens) and flat grain beetle, Cryptolestes pusillus (Schonherr) (Coleoptera: Cucujidae). Journal of Stored Products Research, 2013, 55: 68-72.
[3]
LOSEY S M, DAGLISH G J, PHILLIPS T W. Orientation of rusty grain beetles, Cryptolestes ferrugineus (Coleoptera: Laemophloeidae), to semiochemicals in field and laboratory experiments. Journal of Stored Products Research, 2019, 84: 101513.
[4]
WU Y, LI F, LI Z, STEJSKAL V, KUČEROVÁ Z, OPIT G, AULICKY R, ZHANG T, HE P, CAO Y. Microsatellite markers for Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) and other Cryptolestes species. Bulletin of Entomological Research, 2016, 106(2): 154-160.
[5]
陈二虎, 沈丹蓉, 杜文蔚, 孟宏杰, 唐培安. 表皮蛋白基因参与锈赤扁谷盗磷化氢抗性形成. 中国农业科学, 2023, 56(9): 1696-1707. doi: 10.3864/j.issn.0578-1752.2023.09.007.
CHEN E H, SHEN D R, DU W W, MENG H J, TANG P A. Cuticle protein genes are involved in phosphine resistance of Cryptolestes ferrugineus. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707. doi: 10.3864/j.issn.0578-1752.2023.09.007. (in Chinese)
[6]
KAUR R, NAYAK M K. Developing effective fumigation protocols to manage strongly phosphine-resistant Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Pest Management Science, 2015, 71(9): 1297-1302.
[7]
NAYAK M K, DAGLISH G J, PHILLIPS T W, EBERT P R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annual Review of Entomology, 2020, 65: 333-350.

doi: 10.1146/annurev-ento-011019-025047 pmid: 31610132
[8]
王舒欣, 付鹏程, 刘胜强, 叶真洪, 曾凌沛, 姜祖新. 我国低温储粮技术应用现状与展望. 中国粮油学报, 2023, 38(12): 215-224.
WANG S X, FU P C, LIU S Q, YE Z H, ZENG L P, JIANG Z X. Current situation and prospect of application and development of low-temperature grain storage technology in China. Journal of the Chinese Cereals and Oils Association, 2023, 38(12): 215-224. (in Chinese)
[9]
BHARATHI V S, JIAN F, JAYAS D S. Biology, ecology, and behavior of rusty grain beetle (Cryptolestes ferrugineus (Stephens)). Insects, 2023, 14(7): 590.
[10]
JIAN F. Lethal and mobile variation of stored product insects and mites under low temperatures. Journal of Stored Products Research, 2024, 105: 102240.
[11]
CAMERON S L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annual Review of Entomology, 2014, 59: 95-117.

doi: 10.1146/annurev-ento-011613-162007 pmid: 24160435
[12]
DONG Z, WANG Y, LI C, LI L, MEN X. Mitochondrial DNA as a molecular marker in insect ecology: Current status and future prospects. Annals of the Entomological Society of America, 2021, 114(4): 470-476.
[13]
WADA K, YOKOHAMA M. Analysis of mitochondrial DNA protein-coding region in the Yeso Sika deer (Cervus nippon yesoensis). Animal Science Journal, 2004, 75(4): 295-302.
[14]
KERSCHER S, DRÖSE S, ZICKERMANN V, BRANDT U. The three families of respiratory NADH dehydrogenases//Results and Problems in Cell Differentiation. Berlin, Heidelberg: Springer, 2008, 45: 185-222.
[15]
HARTLEY A M, LUKOYANOVA N, ZHANG Y, CABRERA- OREFICE A, ARNOLD S, MEUNIER B, PINOTSIS N, MARÉCHAL A. Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc1. Nature Structural & Molecular Biology, 2019, 26(1): 78-83.
[16]
ZONG S, WU M, GU J K, LIU T Y, GUO R Y, YANG M J. Structure of the intact 14-subunit human cytochrome c oxidase. Cell Research, 2018, 28(10): 1026-1034.

doi: 10.1038/s41422-018-0071-1 pmid: 30030519
[17]
DA FONSECA R R, JOHNSON W E, O’BRIEN S J, RAMOS M J, ANTUNES A. The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics, 2008, 9: 119.

doi: 10.1186/1471-2164-9-119 pmid: 18318906
[18]
陈二虎, 袁国庆, 陈艳, 陈梦秋, 孙晟源, 唐培安. 线粒体编码基因Nad5、Nad6Atp6参与锈赤扁谷盗磷化氢抗性形成. 中国农业科学, 2024, 57(9): 1722-1733. doi: 10.3864/j.issn.0578-1752.2024.09.008.
CHEN E H, YUAN G Q, CHEN Y, CHEN M Q, SUN S Y, TANG P A. Mitochondrial protein-coding genes Nad5, Nad6 and Atp6 are involved in phosphine resistance of Cryptolestes ferrugineus. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733. doi: 10.3864/j.issn.0578-1752.2024.09.008. (in Chinese)
[19]
陈二虎, 袁国庆, 孙晟源, 唐培安. 环境胁迫对锈赤扁谷盗呼吸速率及线粒体编码基因表达水平的影响. 中国农业科学, 2023, 56(24): 4866-4879. doi: 10.3864/j.issn.0578-1752.2023.24.006.
CHEN E H, YUAN G Q, SUN S Y, TANG P A. The effect of environmental stress on respiratory rate and expression level of mitochondrial protein-coding genes in Cryptolestes ferrugineus. Scientia Agricultura Sinica, 2023, 56(24): 4866-4879. doi: 10.3864/j.issn.0578-1752.2023.24.006. (in Chinese)
[20]
LIM S, SMITH K R, LIM S T S, TIAN R, LU J R, TAN M. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell & Bioscience, 2016, 6: 25.
[21]
王磊. 桔小实蝇线粒体编码基因转录表达及atp6cox2的抗逆性功能[D]. 重庆: 西南大学, 2022.
WANG L. The expression profiles of mitochondrial genes and the functions of atp6 and cox2 underlying environmental stresses in the oriental fruit fly, Bactrocera dorsalis (Hendel)[D]. Chongqing: Southwest University, 2022. (in Chinese)
[22]
ZHAO L, PRIDGEON J W, BECNEL J J, CLARK G G, LINTHICUM K J. Mitochondrial gene cytochrome b developmental and environmental expression in Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2009, 46(6): 1361-1369.
[23]
RAND D M, HANEY R A, FRY A J. Cytonuclear coevolution: The genomics of cooperation. Trends in Ecology and Evolution, 2004, 19(12): 645-653.
[24]
WOLFF J N, LADOUKAKIS E D, ENRÍQUEZ J A, DOWLING D K. Mitonuclear interactions: Evolutionary consequences over multiple biological scales. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2014, 369(1646): 20130443.
[25]
CHAUDHRY M Q, BELL H A, SAVVIDOU N, MACNICOLL A D. Effect of low temperatures on the rate of respiration and uptake of phosphine in different life stages of the cigarette beetle Lasioderma serricorne (F.). Journal of Stored Products Research, 2004, 40(2): 125-134.
[26]
COLINET H, RENAULT D, ROUSSEL D. Cold acclimation allows Drosophila flies to maintain mitochondrial functioning under cold stress. Insect Biochemistry and Molecular Biology, 2017, 80: 52-60.
[27]
陈艳. 基于呼吸速率的锈赤扁谷盗监测模型建立及呼吸调控机理研究[D]. 南京: 南京财经大学, 2022.
CHEN Y. Establishment of a monitoring model for the Cryptolestes ferrugineus based on respiration rate and research on the mechanism of respiration regulation[D]. Nanjing: Nanjing University of Finance and Economics, 2022. (in Chinese)
[28]
唐培安, 李敏, 冯润秋, 王娟, 刘蔓文, 王亚洲, 袁明龙. 基于线粒体基因组数据的扁甲系总科间系统发育关系分析. 中国科学: 生命科学, 2019, 49(2): 163-171.
TANG P A, LI M, FENG R Q, WANG J, LIU M W, WANG Y Z, YUAN M L. Phylogenetic relationships among superfamilies of Cucujiformia (Coleoptera: Polyphaga) inferred from mitogenomic data. Scientia Sinica Vitae, 2019, 49(2): 163-171. (in Chinese)
[29]
TANG P A, DUAN J Y, WU H J, JU X R, YUAN M L. Reference gene selection to determine differences in mitochondrial gene expressions in phosphine-susceptible and phosphine-resistant strains of Cryptolestes ferrugineus, using qRT-PCR. Scientific Reports, 2017, 7: 7047.
[30]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
[31]
HUANG Y, LIAO M, YANG Q, SHI S, XIAO J, CAO H. Knockdown of NADPH-cytochrome P450 reductase and CYP6MS1 increases the susceptibility of Sitophilus zeamais to terpinen-4-ol. Pesticide Biochemistry and Physiology, 2020, 162: 15-22.
[32]
ZHANG Q L, YANG X Z, ZHANG L, FENG R Q, ZHU Q H, CHEN J Y, YUAN M L. Adaptive evidence of mitochondrial genomes in Dolycoris baccarum (Hemiptera: Pentatomidae) to divergent altitude environments. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2019, 30(1): 9-15.
[33]
HAND S C, HARDEWIG I. Downregulation of cellular metabolism during environmental stress: Mechanisms and implications. Annual Review of Physiology, 1996, 58: 539-563.

pmid: 8815808
[34]
VILLARIN J J, SCHAEFFER P J, MARKLE R A, LINDSTEDT S L. Chronic cold exposure increases liver oxidative capacity in the marsupial Monodelphis domestica. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2003, 136(3): 621-630.
[35]
STE-MARIE E, WATANABE Y Y, SEMMENS J M, MARCOUX M, HUSSEY N E. A first look at the metabolic rate of Greenland sharks (Somniosus microcephalus) in the Canadian Arctic. Scientific Reports, 2020, 10: 19297.
[36]
GUPPY M, FUERY C J, FLANIGAN J E. Biochemical principles of metabolic depression. Comparative Biochemistry and Physiology Part B, Comparative Biochemistry, 1994, 109(2/3): 175-189.
[37]
STOREY K B, STOREY J M. Tribute to P. L. Lutz: Putting life on ‘pause’ - molecular regulation of hypometabolism. Journal of Experimental Biology, 2007, 210(10): 1700-1714.
[38]
RUF T, GEISER F. Daily torpor and hibernation in birds and mammals. Biological Reviews of the Cambridge Philosophical Society, 2015, 90(3): 891-926.
[39]
KRIVORUCHKO A, STOREY K B. Turtle anoxia tolerance: Biochemistry and gene regulation. Biochimica et Biophysica Acta (BBA) - General Subjects, 2015, 1850(6): 1188-1196.
[40]
STOREY K B, STOREY J M. Metabolic rate depression in animals: Transcriptional and translational controls. Biological Reviews of the Cambridge Philosophical Society, 2004, 79(1): 207-233.
[41]
SINCLAIR B J. Linking energetics and overwintering in temperate insects. Journal of Thermal Biology, 2015, 54: 5-11.

doi: 10.1016/j.jtherbio.2014.07.007 pmid: 26615721
[42]
TOXOPEUS J, SINCLAIR B J. Mechanisms underlying insect freeze tolerance. Biological Reviews of the Cambridge Philosophical Society, 2018, 93(4): 1891-1914.

doi: 10.1111/brv.12425 pmid: 29749114
[43]
VERCELLINO I, SAZANOV L A. The assembly, regulation and function of the mitochondrial respiratory chain. Nature Reviews, Molecular Cell Biology, 2022, 23(2): 141-161.
[44]
TEETS N M, DENLINGER D L. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiological Entomology, 2013, 38(2): 105-116.
[45]
OVERGAARD J, MACMILLAN H A. The integrative physiology of insect chill tolerance. Annual Review of Physiology, 2017, 79: 187-208.

doi: 10.1146/annurev-physiol-022516-034142 pmid: 27860831
[46]
HAZEL J R. Thermal adaptation in biological membranes: Is homeoviscous adaptation the explanation? Annual Review of Physiology, 1995, 57: 19-42.

pmid: 7778864
[47]
MICHAUD M R, DENLINGER D L. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 2007, 177(7): 753-763.
[48]
PICKERING A M, VOJTOVICH L, TOWER J, DAVIES K J. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radical Biology and Medicine, 2013, 55: 109-118.

doi: 10.1016/j.freeradbiomed.2012.11.001 pmid: 23142766
[49]
ZHAO R Z, JIANG S, ZHANG L, YU Z B. Mitochondrial electron transport chain, ROS generation and uncoupling. International Journal of Molecular Medicine, 2019, 44(1): 3-15.
[50]
MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 1961, 191(4784): 144-148.
[51]
SIREY T M, PONTING C P. Insights into the post-transcriptional regulation of the mitochondrial electron transport chain. Biochemical Society Transactions, 2016, 44(5): 1491-1498.

pmid: 27911731
[52]
YANG Y, XU S, XU J, GUO Y, YANG G. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects. PLoS ONE, 2014, 9(6): e99120.
[53]
BAHHIR D, YALGIN C, OTS L, JÄRVINEN S, GEORGE J, NAUDÍ A, KRAMA T, KRAMS I, TAMM M, ANDJELKOVIĆ A, et al. Manipulating mtDNA in vivo reprograms metabolism via novel response mechanisms. PLoS Genetics, 2019, 15(10): e1008410.
[54]
BALLARD J W O, WHITLOCK M C. The incomplete natural history of mitochondria. Molecular Ecology, 2004, 13(4): 729-744.

doi: 10.1046/j.1365-294x.2003.02063.x pmid: 15012752
[55]
SOMERO G N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology, 2010, 213(6): 912-920.
[56]
HOFFMANN A A, SGRÒ C M. Climate change and evolutionary adaptation. Nature, 2011, 470(7335): 479-485.
[57]
BOSSDORF O, RICHARDS C L, PIGLIUCCI M. Epigenetics for ecologists. Ecology Letters, 2008, 11(2): 106-115.

pmid: 18021243
[58]
BONDURIANSKY R, DAY T. Nongenetic inheritance and its evolutionary implications. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 103-125.
[59]
ORR H A. The genetic theory of adaptation: A brief history. Nature Reviews Genetics, 2005, 6(2): 119-127.

pmid: 15716908
[60]
TAUBER J, DLASKOVÁ A, ŠANTOROVÁ J, SMOLKOVÁ K, ALÁN L, ŠPAČEK T, PLECITÁ-HLAVATÁ L, JABŮREK M, JEŽEK P. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells. The International Journal of Biochemistry & Cell Biology, 2013, 45(3): 593-603.
[61]
FORMOSA L E, DIBLEY M G, STROUD D A, RYAN M T. Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Seminars in Cell & Developmental Biology, 2018, 76: 154-162.
[62]
FORMOSA L E, MUELLNER-WONG L, RELJIC B, SHARPE A J, JACKSON T D, BEILHARZ T H, STOJANOVSKI D, LAZAROU M, STROUD D A, RYAN M T. Dissecting the roles of mitochondrial complex I intermediate assembly complex factors in the biogenesis of complex I. Cell Reports, 2020, 31(3): 107541.
[63]
URRA F A, MUÑOZ F, LOVY A, CÁRDENAS C. The mitochondrial complex(I)ty of cancer. Frontiers in Oncology, 2017, 7: 118.

doi: 10.3389/fonc.2017.00118 pmid: 28642839
[64]
WIRTH C, BRANDT U, HUNTE C, ZICKERMANN V. Structure and function of mitochondrial complex I. . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2016, 1857(7): 902-914.
[65]
KARAGIANNIS T C, EL-OSTA A. RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Therapy, 2005, 12: 787-795.

pmid: 15891770
[66]
SARASTE M. Oxidative phosphorylation at the fin de siècle. Science, 1999, 283(5407): 1488-1493.

doi: 10.1126/science.283.5407.1488 pmid: 10066163
[67]
DINGLEY S D, POLYAK E, OSTROVSKY J, SRINIVASAN S, LEE I, ROSENFELD A B, TSUKIKAWA M, XIAO R, SELAK M A, COON J J, et al. Mitochondrial DNA variant in COX1 subunit significantly alters energy metabolism of geographically divergent wild isolates in Caenorhabditis elegans. Journal of Molecular Biology, 2014, 426(11): 2199-2216.
[68]
CAMUS M F, WOLFF J N, SGRÒ C M, DOWLING D K. Experimental support that natural selection has shaped the latitudinal distribution of mitochondrial haplotypes in Australian Drosophila melanogaster. Molecular Biology and Evolution, 2017, 34(10): 2600-2612.
[69]
MACMILLAN H A, KNEE J M, DENNIS A B, UDAKA H, MARSHALL K E, MERRITT T J S, SINCLAIR B J. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Scientific Reports, 2016, 6: 28999.
[70]
LUBAWY J, CHOWANSKI S, ADAMSKI Z, SLOCINSKA M. Mitochondria as a target and central hub of energy division during cold stress in insects. Frontiers in Zoology, 2022, 19(1): 1.
[1] CHEH ErHu, YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn. Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733.
[2] XIAO LiuHua, KANG NaiHui, LI ShuCheng, ZHENG ZhiYuan, LUO RaoRao, CHEN JinYin, CHEN Ming, XIANG MiaoLian. Effect of Methyl Jasmonate on Energy Metabolism and Membrane Lipid Metabolism During Resistance to Botryosphaeria dothidea in Kiwifruit [J]. Scientia Agricultura Sinica, 2024, 57(7): 1377-1393.
[3] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[4] HUANG Hao, WU QingHong, ZHANG Yu, WANG Ye, LIU QingE, FANG YiDa, LUO ZiSheng. Effects of Novel Phase Change Coolant on the Postharvest Quality of Shiitake Mushrooms [J]. Scientia Agricultura Sinica, 2024, 57(5): 989-999.
[5] ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720.
[6] LI ChuXin, SONG ChenHu, ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen. Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4473-4482.
[7] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[8] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[9] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[10] CHEH ErHu, YUAN GuoQing, SUN ShengYuan, TANG PeiAn. The Effect of Environmental Stress on Respiratory Rate and Expression Level of Mitochondrial Protein-Coding Genes in Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(24): 4866-4879.
[11] LIU ZiGang, WEI JiaPing, CUI JunMei, WU ZeFeng, FANG Yan, DONG XiaoYun, ZHENG GuoQiang. Status, Existing Problems and Strategy Discussion on Northward Expansion of Winter Rapeseed in China [J]. Scientia Agricultura Sinica, 2023, 56(15): 2854-2862.
[12] WANG JunJuan, LU XuKe, WANG YanQin, WANG Shuai, YIN ZuJun, FU XiaoQiong, WANG DeLong, CHEN XiuGui, GUO LiXue, CHEN Chao, ZHAO LanJie, HAN YingChun, SUN LiangQing, HAN MingGe, ZHANG YueXin, FAN YaPeng, YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[13] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[14] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[15] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!