Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4473-4482.doi: 10.3864/j.issn.0578-1752.2024.22.007

• PLANT PROTECTION • Previous Articles     Next Articles

Research on Prevention and Control Technology of Citrus Yellow Vein Clearing Virus Based on VIGS

LI ChuXin(), SONG ChenHu(), ZHOU JinHuan, LI JiaXin, WANG XinLiang, TIAN XuBin, SONG Zhen()   

  1. Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712
  • Received:2024-07-09 Accepted:2024-07-31 Online:2024-11-16 Published:2024-11-22
  • Contact: SONG Zhen

Abstract:

【Objective】Citrus yellow vein clearing virus (CYVCV) is a novel virus that poses a significant threat to the citrus industry. Currently, there is no effective therapeutic agent. The primary strategies for prevention and management involve utilizing virus-free seedlings and implementing stringent control measures against insect vectors. The objective of this study is to investigate the technology of virus-induced gene silencing (VIGS) as a means of developing antiviral “vaccines” for CYVCV, and to offer innovative approaches for the prevention and management of citrus viral diseases.【Method】Based on the previously constructed VIGS vector pCLBV201 in the laboratory, a series of recombinant vectors were designed and developed to target the conserved regions of the CYVCV genome, specifically open reading frame 1 (ORF1), open reading frame 6 (ORF6), coat protein (CP), and triple gene block (TGB). Agrobacterium-mediated vacuum infiltration was inoculated on Eureka lemon, followed by RT-PCR detection. After acquiring several positive plants including pCLBV201-ORF1, pCLBV201-ORF6, pCLBV201-CP, and pCLBV201-TGB, CYVCV infectious clones were inoculated via Agrobacterium-mediated injection, with plants infiltrated with the pCLBV201 empty vector serving as controls. Subsequent RT-qPCR, Western blot analysis, symptom observation, and disease index statistics were conducted to elucidate the preventive and control effects of the various VIGS recombinant vectors on CYVCV. 【Result】A series of recombinant vectors of pCLBV201 were constructed, and the results of RT-PCR following inoculation indicated that multiple positive plants for pCLBV201-ORF1, pCLBV201-ORF6, pCLBV201-CP, and pCLBV201-TGB were obtained, respectively. CYVCV infectious clones were inoculated by injection. The results of RT-qPCR at 7, 14, 28, 70, and 150 dpi (days post infection) showed that the relative expression of CYVCV in the pCLBV201-CP and pCLBV201-TGB treatment groups was significantly lower than that in the control group. Western blot analyses conducted at 70 and 150 dpi showed a significant decrease in the expression of CP protein in the pCLBV201-CP and pCLBV201-TGB treatment groups. Observational symptoms indicated that the control group exhibited typical manifestations of CYVCV infection, such as severe vein clearing and leaf distortion, whereas the pCLBV201-CP treatment group displayed mild symptoms, and the pCLBV201-TGB treatment group showed no apparent symptoms. The disease index statistics at 70 and 150 dpi demonstrated that the disease indices of pCLBV201-CP and pCLBV201-TGB were the lowest, recorded at 17.6, 41.2 and 15.6, 29.1, respectively, while the control group had indices of 52.1 and 80.0, showing obvious differences.【Conclusion】The VIGS-based technology for the prevention and control of CYVCV was developed, which clarified that pCLBV201-CP and pCLBV201-TGB could significantly reduce the virus titers and alleviate the symptoms caused by the virus. They have the potential to be used as “vaccines” for CYVCV prevention and control.

Key words: citrus yellow vein clearing virus (CYVCV), pCLBV201, virus-induced gene silencing (VIGS), RNA interference (RNAi)

Table 1

Information of the primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
扩增产物长度
Product length (bp)
用途
Usage
CitActin-F CATCCCTCAGCACCTTCC 195 柑橘内参基因
Citrus reference gene
CitActin-R CCAACCTTAGCACTTCTCC
qCYVCV F GGTGCCATCGAACGCATTAC 361 CYVCV qPCR检测
CYVCV qPCR detection
qCYVCV R TAGAAACGTCGCGTGGTTCA
pCLBV201-orf1 F *ttagaaatgtagccc AAAGAGATTCGTATGACAAT 327 ORF1序列扩增
ORF1 sequence amplification
pCLBV201-orf1 R gggtcccgaattctg GGTGTATGTTTCAAGCTCCT
pCLBV201-orf6 F ttagaaatgtagccc AGCTATCATTTCGTGTGTGT 340 ORF6序列扩增
ORF6 sequence amplification
pCLBV201-orf6 R gggtcccgaattctg ATTTATGTTTCATCTGGGGT
pCLBV201-CP F ttagaaatgtagccc GCTCAACCTCAACCTAAGAT 341 CP序列扩增
CP sequence amplification
pCLBV201-CP R gggtcccgaattctg CCTTGATCATGAGGTTCCAT
pCLBV201-TGB F ttagaaatgtagccc GATACACGAGAACGTCGAGT 369 TGB序列扩增
TGB sequence amplification
pCLBV201-TGB R gggtcccgaattctg GCAGTAAGTTCGTGAGAGAT
CYVCV 614 F TACCGCAGCTATCCATTTCC 612 CYVCV检测
CYVCV detection
CYVCV 614 R GCAGAAATCCCTAACCACTA
H2206 F TGAGGCTAACTCTGCTATG 249 CLBV检测
CLBV detection
H2206 R TGAGGCTCCGCACAATCT

Fig. 1

PCR detection of pCLBV201 recombinant vector"

Fig. 2

Results of RT-PCR detection of lemon seedlings inoculated with pCLBV201-based vectors"

Fig. 3

RT-PCR detection of CYVCV (7 dpi)"

Fig. 4

RT-qPCR detection of CYVCV"

Fig. 5

Titer monitoring of CYVCV"

Fig. 6

Western blot detection of CYVCV"

Fig. 7

Symptoms for each treatment group at 70 dpi"

Fig. 8

Symptoms for each treatment group at 150 dpi"

Table 2

Disease index statistics of different treatments"

处理
Treatment
病情指数Disease index
70 dpi 150 dpi
pCLBV201 52.1 80.0
pCLBV201-ORF1 29.6 62.9
pCLBV201-ORF6 33.3 66.1
pCLBV201-CP 17.6 41.2
pCLBV201-TGB 15.6 29.1
[1]
LOCONSOLE G, ONELGE N, POTERE O, GIAMPETRUZZI A, BOZAN O, SATAR S, DE STRADIS A, SAVINO V, YOKOMI R K, SAPONARI M. Identification and characterization of citrus yellow vein clearing virus, a putative new member of the genus Mandarivirus. Phytopathology, 2012, 102(12): 1168-1175.
[2]
CATARA A, AZZARO A, MUGHAL S M, KHAN D A. Virus, viroid and prokaryotic diseases of citrus in Pakistan//Proceedings of Sixth International Citrus Congress. 1988: 957-962.
[3]
CHEN H M, LI Z A, WANG X F, ZHOU Y, TANG K Z, ZHOU C Y, ZHAO X Y, YUE J Q. First report of citrus yellow vein clearing virus on lemon in Yunnan, China. Plant Disease. 2014, 98(12): 1747.
[4]
ALSHAMI A, AHLAWAT Y S, PANT R P. A hitherto unreported yellow vein clearing disease of citrus in India and its viral etiology. Indian Phytopathology, 2003, 56(4): 422-427.
[5]
陈洪明, 刘科宏, 周彦, 王雪峰, 周常勇, 李中安. 柑桔黄脉病毒脱毒方法研究. 中国南方果树, 2014, 43(3): 71-73.
CHEN H M, LIU K H, ZHOU Y, WANG X F, ZHOU C Y, LI Z A. Study on detoxification method of citrus yellow vein virus. South China Fruits, 2014, 43(3): 71-73. (in Chinese)
[6]
KUMAGAI M H, DONSON J, DELLA-CIOPPA G, HARVEY D, HANLEY K, GRILL L K. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(5): 1679-1683.
[7]
RATCLIFF F, MARTIN-HERNANDEZ A M, BAULCOMBE D C. Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 2001, 25(2): 237-245.
[8]
刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化. 生物技术通报, 2023, 39(7): 123-130.

doi: 10.13560/j.cnki.biotech.bull.1985.2022-1266
LIU Z Y, DUAN Z Z, PENG T, WANG T X, WANG J. Establishment and optimization of virus-induced gene silencing system in Bougainvillea peruviana ‘Thimma’. Biotechnology Bulletin, 2023, 39(7): 123-130. (in Chinese)
[9]
XU Y Y, CUI Y M, CHEN H Y, PU Y, ZHANG C Y, HUANG H. Development and application of the TRV-induced gene-silencing system in different Rhododendron species. Plant Cell, Tissue and Organ Culture, 2024, 157(3): 61.
[10]
AHMED R, KALDIS A, VOLOUDAKIS A. Silencing of a Nicotiana benthamiana ascorbate oxidase gene reveals its involvement in resistance against cucumber mosaic virus. Planta, 2024, 259(2): 38.
[11]
LIU Y, SCHIFF M, DINESH-KUMAR S P. Virus-induced gene silencing in tomato. The Plant Journal, 2002, 31(6): 777-786.
[12]
HIMBER C, DUNOYER P, MOISSIARD G, RITZENTHALER C, VOINNET O. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. The EMBO Journal, 2003, 22(17): 4523-4533.
[13]
CAI X Z, WANG C C, XU Y P, XU Q F, ZHENG Z, ZHOU X P. Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Research, 2007, 125(2): 169-175.

doi: 10.1016/j.virusres.2006.12.016 pmid: 17289205
[14]
HAJERI S, KILLINY N, EL-MOHTAR C, DAWSON W O, GOWDA S. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). Journal of Biotechnology, 2014, 176: 42-49.
[15]
AGÜERO J, VIVES M, VELÁZQUEZ K, PINA J A, NAVARRO L, MORENO P, GUERRI J. Effectiveness of gene silencing induced by viral vectors based on citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virology, 2014, 460/461: 154-164.
[16]
WANG C Q, MA Z M, ZHOU J H, LI J X, CAO P, SONG C H, LI C X, WANG X L, BIN Y, ZHOU C Y, SONG Z. A simple and effective VIGS system facilitates the control of citrus canker by silencing CsLOB1. Phytopathology Research, 2024, 6(1): 12.
[17]
IGARASHI A, YAMAGATA K, SUGAI T, TAKAHASHI Y, SUGAWARA E, TAMURA A, YAEGASHI H, YAMAGISHI N, TAKAHASHI T, ISOGAI M, TAKAHASHI H, YOSHIKAWA N. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology, 2009, 386(2): 407-416.
[18]
VIVES M C, RUBIO L, GALIPIENSO L, NAVARRO L, MORENO P, GUERRI J. Low genetic variation between isolates of citrus leaf blotch virus from different host species and of different geographical origins. Journal of General Virology, 2002, 83(10): 2587-2591.
[19]
陈洪明, 王雪峰, 周彦, 周常勇, 郭俊, 李中安. 尤力克柠檬上一种新病害的生物学特性及RT-PCR检测. 植物保护学报, 2015, 42(4): 557-563.
CHEN H M, WANG X F, ZHOU Y, ZHOU C Y, GUO J, LI Z A. Biological characterization and RT-PCR detection of a new disease of Eureka lemon. Journal of Plant Protection, 2015, 42(4): 557-563. (in Chinese)
[20]
陈洪明, 周彦, 王雪峰, 周常勇, 杨秀燕, 李中安. 应用实时荧光RT-PCR检测柑橘黄化脉明病毒. 园艺学报, 2016, 43(1): 168-174.

doi: 10.16420/j.issn.0513-353x.2015-0774
CHEN H M, ZHOU Y, WANG X F, ZHOU C Y, YANG X Y, LI Z A. Detection of citrus yellow vein clearing virus based on a real-time RT-PCR approach. Acta Horticulturae Sinica, 2016, 43(1): 168-174. (in Chinese)
[21]
BIN Y, XU J J, DUAN Y, MA Z M, ZHANG Q, WANG C Q, SU Y, JIANG Q Q, SONG Z, ZHOU C Y. The titer of citrus yellow vein clearing virus is positively associated with the severity of symptoms in infected citrus seedlings. Plant Disease, 2022, 106(3): 828-834.
[22]
王莹. 高温抑制柠檬黄脉病症状表现的机理初探[D]. 重庆: 西南大学, 2022.
WANG Y. Preliminary study on the mechanism of high temperature inhibiting the symptoms of lemon yellow vein clearing disease[D]. Chongqing: Southwest University, 2022. (in Chinese)
[23]
廖睿玲, 周常勇, 曹孟籍. 柑桔黄化脉明病毒RNA干扰载体的构建及遗传转化. 中国南方果树, 2023, 52(4): 1-5.
LIAO R L, ZHOU C Y, CAO M J. Construction of RNA interference vector of citrus yellow vein clearing virus and its genetic transformation. South China Fruits, 2023, 52(4): 1-5. (in Chinese)
[24]
JAT S K, BHATTACHARYA J, SHARMA M K. Nanomaterial based gene delivery: A promising method for plant genome engineering. Journal of Materials Chemistry B, 2020, 8(19): 4165-4175.

doi: 10.1039/d0tb00217h pmid: 32285905
[25]
AVILA L A, CHANDRASEKAR R, WILKINSON K E, BALTHAZOR J, HEERMAN M, BECHARD J, BROWN S, PARK Y, DHAR S, REECK G R, TOMICH J M. Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules. Journal of Controlled Release, 2018, 273: 139-146.

doi: S0168-3659(18)30020-8 pmid: 29407675
[26]
YAN S, QIAN J, CAI C, MA Z Z, LI J H, YIN M Z, REN B Y, SHEN J. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. Journal of Pest Science, 2020, 93(1): 449-459.
[27]
CASTELLANOS N L, SMAGGHE G, SHARMA R, OLIVEIRA E E, CHRISTIAENS O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the neotropical stink bug Euschistus heros. Pest Management Science, 2019, 75(2): 537-548.
[28]
LIN Y H, HUANG J H, LIU Y, BELLES X, LEE H J. Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. Pest Management Science, 2017, 73(5): 960-966.
[29]
GILLET F X, GARCIA R A, MACEDO L L P, ALBUQUERQUE E V S, SILVA M C M, GROSSI-DE-SA M F. Investigating engineered ribonucleoprotein particles to improve oral RNAi delivery in crop insect pests. Frontiers in Physiology, 2017, 8: 256.
[30]
MITTER N, WORRALL E A, ROBINSON K E, LI P, JAIN R G, TAOCHY C, FLETCHER S J, CARROLL B J, LU G Q, XU Z P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 2017, 3: 16207.

doi: 10.1038/nplants.2016.207 pmid: 28067898
[1] CHEH ErHu, YUAN GuoQing, CHEN Yan, CHEN MengQiu, SUN ShengYuan, TANG PeiAn. Mitochondrial Protein-Coding Genes Nad5, Nad6 and Atp6 are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(9): 1722-1733.
[2] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[3] ZHAO YiYan, GUO HongFang, LIU WeiMin, ZHAO XiaoMing, ZHANG JianZhen. Effects of Apolipophorin on Ovarian Development and Lipid Deposition in Locusta migratoria [J]. Scientia Agricultura Sinica, 2024, 57(4): 711-720.
[4] YUAN GuoQing, CHEN ErHu, TANG PeiAn. The Mechanisms of Mitochondrial Protein-Coding Genes ND6 and ATP6 in Regulating Cold Tolerance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2024, 57(22): 4483-4494.
[5] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[6] CHEH ErHu, SHEN DanRong, DU WenWei, MENG HongJie, TANG PeiAn. Cuticle Protein Genes are Involved in Phosphine Resistance of Cryptolestes ferrugineus [J]. Scientia Agricultura Sinica, 2023, 56(9): 1696-1707.
[7] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[8] BIN Yu, ZHANG Qi, WANG ChunQing, ZHAO XiaoChun, SONG Zhen, ZHOU ChangYong. Screening of the Host Factors Interacting with CP of Citrus Yellow Vein Clearing Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2023, 56(10): 1881-1892.
[9] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[10] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[11] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[12] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[13] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[14] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[15] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!