Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 306-318.doi: 10.3864/j.issn.0578-1752.2024.02.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet

DONG ErWei(), WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan()   

  1. College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031
  • Received:2023-02-28 Accepted:2023-05-06 Online:2024-01-16 Published:2024-01-19
  • Contact: JIAO XiaoYan

Abstract:

【Objective】 To provide the theoretical basis for rational nitrogen (N) application and promoting high yield and high quality of foxtail millet (Setaria italica (L.) Beauv.), this study aimed to clarify the effects of different N application rates on plant N utilization characteristics, grain yield and grain quality of foxtail millet. 【Method】 To investigate the effects of different N application levels on plant N accumulation, transfer and utilization characteristics, grain yield and its components, grain micronutrients content and pasting properties, a 2-year field experiment (2020-2021) was performed with different N fertilization application at four levels (0, 75, 120, and 150 kg·hm-2, represented as N0, N75, N120, and N150, respectively) in the Qinxian County of Shanxi Province, located in the spring sowing region of China.【Result】 Compared with N0, N application increased panicle number per unit area at harvest, grain number per panicle and plant productivity of foxtail millet. N application also significantly enhanced N translocation and promoted the distribution of both dry matter and N in grains. As a consequence, an enhanced grain yield was obtained when subjected to N application. Further, among all treatments, the highest values of panicle number per unit area at harvest, grain number per panicle, both grain yield and biomass, harvest index, total N accumulation and N translocation efficiency were obtained when 75 kg·hm-2 was supplied; compared with the values produced by N0, the increased rate reached 7.5%, 23.3%, 31.0%, 21.2%, 8.6%, 40.3% and 9.2% by N75, respectively. Compared with N0 treatment, the content of Fe, Zn, Ca, Mg and Se in foxtail millet grains under N75 treatment were increased by 37.3%, 43.6%, 56.0%, 30.5% and 16.9% at most, respectively. Excessive N application (N 150) decreased grain number, harvest index and N translocation efficiency compared with N75 treatment. More than 75 kg·hm-2 application resulted in diminished N translocation efficiency, by 23.1% and 28.1%, in 2020 and 2021, respectively. The content of amylopectin and starch yield were also limited by excessive N. Over-use N fertilizer also significantly decreased final viscosity, setback and trough viscosity. Pearson correlation coefficients demonstrated a strong positive relationship between plant N accumulation and the content of Fe, Zn, Ca, Mg and Se in foxtail millet grains, and a significant negative relationship between plant N accumulation and the content of amylopectin, final viscosity and trough viscosity in foxtail millet grains.【Conclusion】 The N application at 75-120 kg·hm-2 could promoted the allocation of dry matter and N in grain, which was relative to the enhanced N transfer from vegetative organs to grains. Also the reasonable pasting properties and biofortification of beneficial trace elements of Fe, Zn, Ca, Mg and Se was produced by such N dose in this study area.

Key words: foxtail millet (Setaria italica (L.) Beauv.), nitrogen application rate, nitrogen utilization characteristics, grain yield, pasting properties, micronutrients

Fig. 1

Average daily temperature and rainfall during 2020 and 2021 growing seasons of foxtail millet"

Table 1

Soil nutrient content at 0-20 cm soil layer in 2020 and 2021"

年份
Year
pH 有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
速效磷
Olsen phosphorus
(mg·kg-1)
速效钾
Available potassium
(mg·kg-1)
有效铁
Available Fe
(mg·kg-1)
有效锌
Available Zn
(mg·kg-1)
交换钙
Available Ca
(g·kg-1)
交换镁
Available Mg
(g·kg-1)
有效硒
Available Se
(μg·kg-1)
2020 8.26 17.18 0.98 10.47 164.01 6.42 1.25 1.31 0.26 19.5
2021 8.33 11.28 0.99 11.83 184.47 6.28 1.18 1.29 0.28 19.8

Table 2

Effects of N application rates on grain yield and composition of foxtail millet (mean±SE)"

年份
Year
处理
Treatment
产量
Grain yield
(kg·hm-2)
收获穗数
Spike number at harvest (×104·hm-2)
穗粒数
Grain number
per panicle
千粒重
1000-grain weight
(g)
地上部生物量
Biomass
(kg·hm-2)
收获指数
HI
(%)
2020 N0 5403.3±81.0a 43.0±0.2a 4660.5±42.9a 2.63±0.05a 9883.5±84.3a 53.3±0.1b
N75 6462.0±166.7b 44.7±0.3b 5583.4±135.1c 2.75±0.01b 11823.1±222.7b 57.9±0.4c
N120 6184.8±180.0b 44.3±0.1b 5257.3±159.9c 2.71±0.03ab 12169.5±190.7b 52.0±0.9ab
N150 6166.7±264.2b 44.7±0.1b 5046.6±105.5b 2.76±0.02b 12709.6±246.3c 49.7±1.7a
2021 N0 4660.0±13.3a 41.7±0.3a 4304.4±42.9a 2.60±0.02a 11497.9±51.7a 40.5±0.2a
N75 6104.1±18.6c 44.8±0.1b 5309.0±54.0c 2.57±0.02a 13937.6±64.1c 43.8±0.2b
N120 6005.9±16.9c 44.4±0.1b 5251.0±48.2c 2.60±0.03a 13885.0±108.5c 43.6±0.3b
N150 5239.7±108.7b 44.6±0.2b 4488.8±24.0b 2.63±0.03a 12902.4±118.6b 41.2±0.6a

Table 3

Effects of N application rates on N accumulation, distribution and translocation"

年代
Year
处理
Treatment
氮累积量
N accumulation (kg·hm-2)
氮转运量
NT (kg·hm-2)
氮转运率
NTE (%)
转运氮贡献率
NCE (%)
氮素收获指数
NHI (%)
2020 N0 125.6±3.0a 43.8±0.5a 59.8±0.5c 54.0±1.2b 64.7±0.9b
N75 176.2±3.0b 65.2±1.3c 61.9±0.4d 60.4±1.2c 62.3±0.5a
N120 163.1±2.0b 47.3±0.2b 50.5±0.2b 46.0±0.7a 63.1±0.5ab
N150 163.6±2.9b 47.0±1.5ab 47.6±1.0a 46.0±1.4a 62.1±0.9ab
2021 N0 134.1±1.7a 48.1±1.2a 55.3±1.4b 64.9±0.7b 55.2±0.6b
N75 173.9±2.8b 79.8±0.6b 60.4±0.6c 78.6±1.1d 58.4±0.7c
N120 186.8±1.2c 78.0±1.0b 50.5±0.2b 73.2±1.2c 57.0±0.2c
N150 172.2±4.1ab 50.2±1.7a 43.4±0.4a 58.4±0.4a 49.9±0.4a

Table 4

Effects of different N application rates on N use efficiency in foxtail millet"

年份
Year
处理
Treatment
氮利用率
NUE (%)
氮农学效率
NAE (kg·kg-1)
氮表观回收率
NARR (%)
2020 N0
N75 67.4±4.6b 19.9±1.6b 234.9±3.9c
N120 31.3±6.4a 8.8±0.6a 136.0±3.6b
N150 25.8±2.8a 7.3±1.6a 109.1±1.9a
2021 N0
N75 53.1±5.4b 19.3±0.2b 231.8±3.8c
N120 43.9±7.7a 11.6±0.1a 155.6±5.1b
N150 25.4±3.0a 3.9±0.7a 114.8±2.8a

Fig. 2

Effects of different N application rates on content of amylose, amylopectin, total starch and the yield of starch per hectare in 2020 and 2021 Different letters indicate significant difference at 0.05 probability level among different treatments for each year. The same as below"

Table 5

Effects of different N application rates on pasting properties of husked grain"

年份
Year
处理
Treatment
峰值黏度
Peak viscosity
(BU)
最终黏度
Final viscosity
(BU)
崩解值
Breakdown
(BU)
回升值
Setback
(BU)
峰谷黏度
Trough viscosity
(BU)
糊化温度
Pasting temperature (℃)
开始糊化时间
Start pasting time (min)
2020 N0 260.7±3.2ab 498.0±6.1c 71.3±7.4a 349.0±8.1b 149.0±2.0b 78.1±0.8b 9.8±0.2b
N75 270.0±0.6b 474.3±1.3b 73.0±2.3a 363.0±5.0b 111.3±5.7a 78.3±0.5b 9.7±0.2ab
N120 252.3±6.8a 450.0±4.7a 72.0±7.6a 325.7±4.4a 124.3±2.9a 77.9±0.5b 9.6±0.2ab
N150 251.7±6.7a 455.0±4.5a 69.7±3.0a 326.7±4.2a 128.3±4.4a 75.7±0.6a 9.2±0.1a
2021 N0 280.0±6.2a 535.7±4.3c 71.0±4.7b 386.3±4.8b 149.3±6.2b 79.6±1.1a 10.4±0.1b
N75 271.3±5.3a 507.3±2.4b 68.7±6.8ab 358.7±3.0a 148.7±5.4b 79.4±1.1a 10.1±0.1a
N120 272.7±6.9a 492.3±3.2a 68.7±2.3ab 366.0±2.1a 126.3±3.2a 79.5±0.5a 9.7±0.1a
N150 263.3±3.8a 497.7±3.2ab 55.0±1.5a 362.3±1.3a 135.3±3.4ab 79.2±0.6a 10.1±0.1a

Fig. 3

Correlations between aboveground N accumulation, starch content, and pasting parameters NAM: N accumulation aboveground at mature; ALC: Amylose content; ALPC: Amylopectin content; SC: Starch content; FV: Final viscosity; SB: Setback; TV: Trough viscosity; SPT: Start pasting time; Y: Year. *, ** and *** indicated significant correlations at 0.05, 0.01 and 0.001 levels, respectively"

Table 6

Effects of different N application rates on concentrations of Fe, Zn, Ca, Mg and Se in husked grain of foxtail millets"

年份
Year
处理
Treatment
铁含量
Fe content (mg·kg-1)
锌含量
Zn content (mg·kg-1)
钙含量
Ca content (mg·kg-1)
镁含量
Mg content (mg·kg-1)
硒含量
Se content (μg·kg-1)
2020 N0 22.50±0.51a 27.37±0.91a 192.36±6.01a 1156.78±19.12a 17.71±0.50a
N75 29.67±0.59b 39.30±1.23b 300.03±0.58b 1490.15±33.01b 20.71±0.68c
N120 28.79±0.87b 37.26±0.83b 310.60±6.11b 1545.52±15.36b 18.00±1.00b
N150 31.19±1.18b 38.33±0.68b 309.44±4.82b 1582.47±46.78b 18.71±0.50b
2021 N0 25.69±0.55a 23.59±1.18a 182.76±5.15a 1221.27±25.93a 20.12±0.92a
N75 35.26±0.07c 33.11±0.44b 283.24±3.88b 1563.22±10.63bc 21.29±0.78b
N120 34.31±0.86c 33.49±0.57b 314.29±2.75c 1503.82±15.00b 21.63±0.88b
N150 31.63±0.35b 34.55±0.62b 307.89±8.82c 1613.42±38.69c 20.12±0.92b

Fig. 4

Correlations between N accumulation aboveground, and concentrations of Fe, Zn, Ca, Mg and Se of husked grain NAM: N accumulation aboveground at mature; Fe: Fe content; Zn: Zn content; Ca: Ca content; Mg: Mg content; Se: Se content; Y: Year. *, ** and *** indicated significant correlations at 0.05, 0.01 and 0.001 levels, respectively"

[1]
MAL B, PADULOSI S, RAVI S B. Minor millets in South Asia: Learnings from IFAD-NUS project in India and Nepal. MS Swaminathan Research Foundation, 1-185.
[2]
BHATT D, FAIROS M, MAZUMDAR A. Millets: Nutritional composition, production and significance: A review. Journal of Pharmaceutical Innovation, 2022, 11:1577-1582.
[3]
NADEEM F, AHMAD Z, WANG R F, HAN J N, SHEN Q, CHANG F R, DIAO X M, ZHANG F S, LI X X. Foxtail millet [Setaria italica (L.) beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Frontiers in Plant Science, 2018, 9: 205.

doi: 10.3389/fpls.2018.00205
[4]
HAN J N, WANG L F, ZHENG H Y, PAN X Y, LI H Y, CHEN F J, LI X X. ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta, 2015, 242(4): 935-949.

doi: 10.1007/s00425-015-2331-3 pmid: 26013182
[5]
XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63: 153-182.

doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[6]
JIANG L G, DAI T B, JIANG D, CAO W X, GAN X Q, WEI S Q. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research, 2004, 88(2/3): 239-250.

doi: 10.1016/j.fcr.2004.01.023
[7]
王夏雯, 王绍华, 李刚华, 王强盛, 刘正辉, 余翔, 丁艳锋. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008, 34(12): 2184-2189.

doi: 10.3724/SP.J.1006.2008.02184
WANG X W, WANG S H, LI G H, WANG Q S, LIU Z H, YU X, DING Y F. Effect of panicle nitrogen fertilizer on concentrations of cytokinin and auxin in young panicles of Japonica rice and its relation with spikelet development. Acta Agronomica Sinica, 2008, 34(12): 2184-2189. (in Chinese)

doi: 10.3724/SP.J.1006.2008.02184
[8]
LI G H, HU Q Q, SHI Y G, CUI K H, NIE L X, HUANG J L, PENG S B. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Frontiers in Plant Science, 2018, 9: 1128.

doi: 10.3389/fpls.2018.01128 pmid: 30108604
[9]
LIU X M, GU W R, LI C F, LI J, WEI S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China. Journal of Integrative Agriculture, 2021, 20(2): 511-526.

doi: 10.1016/S2095-3119(20)63403-7
[10]
张亚琦, 李淑文, 付巍, 宏达. 施氮对杂交谷子产量与光合特性及水分利用效率的影响. 植物营养与肥料学报, 2014, 20(5): 1119-1126.
ZHANG Y Q, LI S W, FU W, HONG D. Effects of nitrogen application on yield, photosynthetic characteristics and water use efficiency of hybrid millet. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1119-1126. (in Chinese)
[11]
CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 2018, 69(1): 172-180.

doi: 10.1111/ejss.2018.69.issue-1
[12]
CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. REVIEW: biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20.

doi: 10.1094/CCHEM-87-1-0010
[13]
TRIBOI E, TRIBOI-BLONDEL A M. Productivity and grain or seed composition: a new approach to an old problem—invited paper. European Journal of Agronomy, 2002, 16(3): 163-186.

doi: 10.1016/S1161-0301(01)00146-0
[14]
MUCHOW R C, SINCLAIR T R. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and Sorghum. Crop Science, 1994, 34(3): 721-727.

doi: 10.2135/cropsci1994.0011183X003400030022x
[15]
OOKAWA T, NARUOKA Y, SAYAMA A, HIRASAWA T. Cytokinin effects on ribulose-1, 5-bisphosphate carboxylase/ oxygenase and nitrogen partitioning in rice during ripening. Crop Science, 2004, 44(6): 2107-2115.

doi: 10.2135/cropsci2004.2107
[16]
ERENOGLU E B, KUTMAN U B, CEYLAN Y, YILDIZ B, CAKMAK I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, 2011, 189(2): 438-448.

doi: 10.1111/nph.2010.189.issue-2
[17]
朱兆良, 文启孝. 中国土壤氮素. 南京: 江苏科学技术出版社, 1992.
ZHU Z L, WEN Q X. Nitrogen in Soils of China. Nanjing: Jiangshu Science and Technology Press, 1992. (in Chinese)
[18]
晏娟, 沈其荣, 尹斌. 施氮量对氮高效水稻种质4007的氮素吸收、转运和利用的影响. 土壤学报, 2010, 47(1): 107-114.
YAN J, SHEN Q R, YIN B. Effects of nitrogen application rate on uptake, translocation and use of nitrogen by rice germ plasm 4007 high in nitrogen use efficiency. Acta Pedologica Sinica, 2010, 47(1): 107-114. (in Chinese)
[19]
OSAKI M, IYODA M, TADANO T. Ontogenetic changes in the contents of ribulose-1, 5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, and chlorophyll in individual leaves of maize. Soil Science and Plant Nutrition, 1995, 41(2): 285-293.

doi: 10.1080/00380768.1995.10419585
[20]
GUO Y F, GAN S S. Translational researches on leaf senescence for enhancing plant productivity and quality. Journal of Experimental Botany, 2014, 65(14): 3901-3913.

doi: 10.1093/jxb/eru248 pmid: 24935620
[21]
ZHU D W, ZHANG H C, GUO B W, XU K, DAI Q G, WEI C X, ZHOU G S, HUO Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocolloids, 2017, 63: 525-532.

doi: 10.1016/j.foodhyd.2016.09.042
[22]
LIANG B, ZHAO W, YANG X Y, ZHOU J B. Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat-maize experiment. Field Crops Research, 2013, 144: 126-134.

doi: 10.1016/j.fcr.2012.12.007
[23]
戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50(5): 956-965.
DAI J, WANG Z H, LI Q, LI M H, LI F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedologica Sinica, 2013, 50(5): 956-965. (in Chinese)
[24]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K. Analytical Methods for Soil and Agro-Chemistry. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[25]
MAN J M, YANG Y, ZHANG C Q, ZHOU X H, DONG Y, ZHANG F M, LIU Q Q, WEI C X. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. Journal of Agricultural and Food Chemistry, 2012, 60(36): 9332-9341.

doi: 10.1021/jf302966f
[26]
依兵. 高粱子粒淀粉积累与合成相关酶活性研究[D]. 沈阳: 沈阳农业大学, 2014.
YI B. Study on the activities of enzymes related to starch accumulation and synthesis in Sorghum seeds[D]. Shenyang: Shenyang Agricultural University, 2014. (in Chinese)
[27]
LIU H, WANG Z H, LI F C, LI K Y, YANG N, YANG Y E, HUANG D L, LIANG D L, ZHAO H B, MAO H, LIU J S, QIU W H. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Research, 2014, 156: 151-160.

doi: 10.1016/j.fcr.2013.11.011
[28]
刘朋召, 周栋, 郭星宇, 于琦, 张元红, 李昊昱, 张琦, 王旭敏, 王小利, 王瑞, 李军. 不同降雨年型旱地冬小麦水分利用及产量对施氮量的响应. 中国农业科学, 2021, 54(14): 3065-3076. doi: 10.3864/j.issn.0578-1752.2021.14.012.
LIU P Z, ZHOU D, GUO X Y, YU Q, ZHANG Y H, LI H Y, ZHANG Q, WANG X M, WANG X L, WANG R, LI J. Response of water use and yield of dryland winter wheat to nitrogen application under different rainfall patterns. Scientia Agricultura Sinica, 2021, 54(14): 3065-3076. doi: 10.3864/j.issn.0578-1752.2021.14.012. (in Chinese)
[29]
吕广德, 亓晓蕾, 张继波, 牟秋焕, 吴科, 钱兆国. 中、高产型小麦干物质和氮素累积转运对水氮的响应. 植物营养与肥料学报, 2021, 27(9): 1534-1547.
G D, QI X L, ZHANG J B, MU Q H, WU K, QIAN Z G. Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1534-1547. (in Chinese)
[30]
ZHOU Y, HOOPER P, COVENTRY D, DENTON M D. Strategic nitrogen supply alters canopy development and improves nitrogen use efficiency in dryland wheat. Agronomy Journal, 2017, 109(3): 1072-1081.

doi: 10.2134/agronj2016.08.0458
[31]
STITT M, MÜLLER C, MATT P, GIBON Y, CARILLO P, MORCUENDE R, SCHEIBLE W, KRAPP A. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany, 2002, 53(370): 959-970.

pmid: 11912238
[32]
张经廷, 吕丽华, 张丽华, 董志强, 姚艳荣, 姚海坡, 申海平, 贾秀领. 作物水肥耦合类型量化方法在华北冬小麦水氮配置中的应用. 中国农业科学, 2019, 52(17): 2997-3007. doi: 10.3864/j.issn.0578-1752.2019.17.008.
ZHANG J T, L H, ZHANG L H, DONG Z Q, YAO Y R, YAO H P, SHEN H P, JIA X L. A novel method for quantitating water and fertilizer coupling types and its application in optimizing water and nitrogen combination in winter wheat in the North China plain. Scientia Agricultura Sinica, 2019, 52(17): 2997-3007. doi: 10.3864/j.issn.0578-1752.2019.17.008. (in Chinese)
[33]
NTANOS D A, KOUTROUBAS S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Research, 2002, 74(1): 93-101.

doi: 10.1016/S0378-4290(01)00203-9
[34]
蔡瑞国, 李亚华, 张敏, 郭良海, 王文颇, 周印富. 雨养与灌溉条件下施氮对小麦花后氮素累积与转运的影响. 麦类作物学报, 2014, 34(3): 351-357.
CAI R G, LI Y H, ZHANG M, GUO L H, WANG W P, ZHOU Y F. Effects of nitrogen fertilizer rates on nitrogen accumulation and translocation after anthesis in wheat under rain-fed and irrigated conditions. Journal of Triticeae Crops, 2014, 34(3): 351-357. (in Chinese)
[35]
EHDAIE B, WAINES J G. Sowing date and nitrogen rate effects on dry matter and nitrogen partitioning in bread and durum wheat. Field Crops Research, 2001, 73(1): 47-61.

doi: 10.1016/S0378-4290(01)00181-2
[36]
THOMAS H, OUGHAM H. The stay-green trait. Journal of Experimental Botany, 2014, 65(14): 3889-3900.

doi: 10.1093/jxb/eru037 pmid: 24600017
[37]
巨晓棠. 氮肥有效率的概念及意义: 兼论对传统氮肥利用率的理解误区. 土壤学报, 2014, 51(5): 921-933.
JU X T. The concept and significance of nitrogen fertilizer efficiency—also on the misunderstanding of traditional nitrogen fertilizer efficiency. Acta Pedologica Sinica, 2014, 51(5): 921-933. (in Chinese)
[38]
刘平, 刘学军, 骆晓声, 吴庆华, 刘恩科, 韩彦龙, 李丽君, 白光洁, 武文丽, 张强. 山西北部农村区域大气活性氮沉降特征. 生态学报, 2016, 36(17): 5353-5359.
LIU P, LIU X J, LUO X S, WU Q H, LIU E K, HAN Y L, LI L J, BAI G J, WU W L, ZHANG Q. The atmospheric deposition characteristics of reactive nitrogen(Nr) species in Shuozhou area. Acta Ecologica Sinica, 2016, 36(17): 5353-5359. (in Chinese)
[39]
DONG M H, SANG D Z, WANG P, WANG X M, YANG J C. Changes in cooking and nutrition qualities of grains at different positions in a rice panicle under different nitrogen levels. Rice Science, 2007, 14(2): 141-148.

doi: 10.1016/S1672-6308(07)60020-1
[40]
YANG X Y, BI J G, GILBERT R G, LI G H, LIU Z H, WANG S H, DING Y F. Amylopectin chain length distribution in grains of Japonica rice as affected by nitrogen fertilizer and genotype. Journal of Cereal Science, 2016, 71: 230-238.

doi: 10.1016/j.jcs.2016.09.003
[41]
SCHEIBLE W R. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell, 1997, 9(5): 783-798.

pmid: 12237366
[42]
冯伟, 李晓, 郭天财, 朱云集, 王晨阳. 水氮运筹对两种穗型冬小麦品种淀粉糊化特性的影响. 水土保持学报, 2005, 19(5): 186-190.
FENG W, LI X, GUO T C, ZHU Y J, WANG C Y. Effects of strategy of irrigation and nitrogen on paste properties of starch of two spike-type wheat cultivars. Journal of Soil Water Conservation, 2005, 19(5): 186-190. (in Chinese)
[43]
张美微, 王晨阳, 贺德先, 马冬云. 环境和氮磷肥对强筋小麦品种郑麦9023淀粉糊化特性的影响. 麦类作物学报, 2010, 30(5): 905-909, 987.
ZHANG M W, WANG C Y, HE D X, MA D Y. Effects of location and different ratios of nitrogen and phosphorus fertilizers on starch pasting properties of strong-gluten wheat cultivar Zhengmai 9023. Journal of Triticeae Crops, 2010, 30(5): 905-909, 987. (in Chinese)
[44]
GAO L C, BAI W M, XIA M J, WAN C X, WANG M, WANG P K, GAO X L, GAO J F. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. International Journal of Biological Macromolecules, 2021, 179: 542-549.

doi: 10.1016/j.ijbiomac.2021.03.045 pmid: 33716128
[45]
UARROTA V G, AMANTE E R, DEMIATE I M, VIEIRA F, DELGADILLO I, MARASCHIN M. Physicochemical, thermal, and pasting properties of flours and starches of eight Brazilian maize landraces (Zea mays L.). Food Hydrocolloids, 2013, 30(2): 614-624.

doi: 10.1016/j.foodhyd.2012.08.005
[46]
MARTIN M, FITZGERALD M A. Proteins in rice grains influence cooking properties!. Journal of Cereal Science, 2002, 36(3): 285-294.

doi: 10.1006/jcrs.2001.0465
[47]
SINGH S, SINGH N, ISONO N, NODA T. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. Journal of Agricultural and Food Chemistry, 2010, 58(2): 1180-1188.

doi: 10.1021/jf902753f pmid: 20043631
[48]
SIMI C K, ABRAHAM T E. Physicochemical rheological and thermal properties of njavara rice (Oryza sativa) starch. Journal of Agricultural and Food Chemistry, 2008, 56(24): 12105-12113.

doi: 10.1021/jf802572r pmid: 19053396
[49]
HUANG Y, TONG C, XU F F, CHEN Y L, ZHANG C Y, BAO J S. Variation in mineral elements in grains of 20 brown rice accessions in two environments. Food Chemistry, 2016, 192: 873-878.

doi: 10.1016/j.foodchem.2015.07.087 pmid: 26304423
[50]
CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. Review: biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20.

doi: 10.1094/CCHEM-87-1-0010
[51]
REIS H P G, DE QUEIROZ BARCELOS J P, SILVA V M, SANTOS E F, TAVANTI R F R, PUTTI F F, YOUNG S D, BROADLEY M R, WHITE P J, DOS REIS A R. Agronomic biofortification with selenium impacts storage proteins in grains of upland rice. Journal of the Science of Food and Agriculture, 2020, 100(5): 1990-1997.

doi: 10.1002/jsfa.10212 pmid: 31849063
[52]
WANG Z X, ZHANG F F, XIAO F, TAO Y, LIU Z H, LI G H, WANG S H, DING Y F. Contribution of mineral nutrients from source to sink organs in rice under different nitrogen fertilization. Plant Growth Regulation, 2018, 86(2): 159-167.

doi: 10.1007/s10725-018-0418-0
[53]
REIS H P G, DE QUEIROZ BARCELOS J P, JUNIOR E F, SANTOS E F, SILVA V M, MORAES M F, PUTTI F F, DOS REIS A R. Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. Journal of Cereal Science, 2018, 79: 508-515.

doi: 10.1016/j.jcs.2018.01.004
[54]
GROTZ N, GUERINOT M L. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2006, 1763(7): 595-608.

doi: 10.1016/j.bbamcr.2006.05.014
[55]
CURIE C, CASSIN G, COUCH D, DIVOL F, HIGUCHI K, LE JEAN M, MISSON J, SCHIKORA A, CZERNIC P, MARI S. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009, 103(1): 1-11.

doi: 10.1093/aob/mcn207 pmid: 18977764
[56]
RAMESH S A, CHOIMES S, SCHACHTMAN D P. Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Molecular Biology, 2004, 54(3): 373-385.

doi: 10.1023/B:PLAN.0000036370.70912.34
[1] LIU Meng, ZHANG Yao, GE JunZhu, YANG YongAn, WU XiDong, HOU HaiPeng. Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight Under Different Rainfall Years [J]. Scientia Agricultura Sinica, 2023, 56(20): 3975-3995.
[2] LI Yi, LU JianXin, CAO Peng, ZHOU DengWen, LIU JiMin, TIAN PingPing, CAI MingLi, CAO CouGui, YANG TeWu. Critical Lowest Temperature for the Safe Heading of Various Types of Late-Season Rice Cultivars and the Safe Dates for Their Full Heading in Different Double-Season Rice Cropping Regions of Hubei Province [J]. Scientia Agricultura Sinica, 2023, 56(17): 3302-3316.
[3] ZHANG WenXia, LI Pan, YIN Wen, CHEN GuiPing, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Effects of Multiple Green Manure After Wheat Combined with Different Levels of Nitrogen Fertilization on Wheat Yield, Grain Quality, and Nitrogen Utilization [J]. Scientia Agricultura Sinica, 2023, 56(17): 3317-3330.
[4] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[5] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[6] GUO XinHu, MA Jing, LI ZhongFeng, CHU JinPeng, XU HaiCheng, JIA DianYong, DAI XingLong, HE MingRong. Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2262-2273.
[7] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[8] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[9] GUI RunFei, WANG ZaiMan, PAN ShengGang, ZHANG MingHua, TANG XiangRu, MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[10] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[11] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[12] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[13] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[14] GAO RenCai, CHEN SongHe, MA HongLiang, MO Piao, LIU WeiWei, XIAO Yun, ZHANG Xue, FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[15] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!