Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 319-335.doi: 10.3864/j.issn.0578-1752.2024.02.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation

HE Jing(), WANG ZhenHua(), LIU Jian, MA ZhanLi, WEN Yue   

  1. College of Water Conservancy & Architectural Engineering, Shihezi University/Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group/Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832003, Xinjiang
  • Received:2023-03-02 Accepted:2023-04-17 Online:2024-01-16 Published:2024-01-19
  • Contact: WANG ZhenHua

Abstract:

【Objective】 The response mechanism of soil hydrothermal environment and cotton growth to irrigation water temperature and nitrogen application rate under mulched drip irrigation was explored to determine the reasonable irrigation water temperature and nitrogen application rate of drip irrigation cotton in northern Xinjiang.【Method】 A two-factor completely randomized experimental design was conducted with "Xinluzao 42" cotton as the experimental material with four irrigation water temperature levels (15 ℃ (T0), 20 ℃ (T1), 25 ℃ (T2), and 30 ℃ (T3)) and three nitrogen application levels (250 kg·hm-2 (F1), 300 kg·hm-2 (F2), and 350 kg·hm-2 (F3)). The effects of nitrogen application on soil hydrothermal environment, cotton growth and yield, and water and nitrogen use efficiency under different irrigation water temperature were analyzed.【Result】 The conventional irrigation water temperature and low nitrogen treatment reduced soil temperature, inhibited cotton growth, decreased boll number per plant and seed cotton yield. Suitable irrigation water and nitrogen application could improve the soil's hydrothermal environment, promote cotton growth and development, and improve seed cotton yield and water and nitrogen utilization. Compared with 15 ℃ of conventional irrigation water temperature, the warming irrigation significantly increased the soil temperature by 0.58-3.30 ℃, and soil water storage was reduced by 1.2%-7.2%, while soil respiration rate was significantly increased by 5.7%-28.0%; cotton plant height, leaf area index, and above-ground dry matter accumulation increased and then decreased with the increase of irrigation water temperature, and reached the maximum at 25 ℃. With increasing nitrogen application rate, soil water storage decreased by 3.3%-6.7%, soil respiration rate increased significantly by 3.6%-9.5%, cotton plant height increased significantly by 3.2%-4.9%, leaf area index increased significantly by 5.8%-11.0%, and above-ground dry matter accumulation increased significantly by 1.2%-2.2%, these indicators all reached the maximum under 350 kg·hm-2 nitrogen fertilizer application. Water use efficiency, nitrogen fertilizer bias productivity, and seed cotton yield all increased and then decreased with the increase of irrigation water temperature, and showed a trend of “increasing, decreasing, and increasing” with the increase of nitrogen application. The path analysis showed that soil temperature directly affected seed cotton yield, while nitrogen application indirectly affected seed cotton yield by promoting cotton growth. The seed cotton yield and water use efficiency reached the maximum under T2F2 treatment, which were 6 652.3 kg·hm-2 and 1.17 kg·m-3, respectively. But the nitrogen fertilizer bias productivity was significantly greater under T2F2 treatment (22.17 kg·kg-1) than that under T2F3 treatment (18.80 kg·kg-1).【Conclusion】 Considering the effects of irrigation water temperature and nitrogen application on soil temperature, soil respiration rate, cotton growth, yield, and water and nitrogen utilization rate, a suitable combination of irrigation water temperature of 25 ℃ and nitrogen application rate of 300 kg·hm-2 were recommended in northern Xinjiang.

Key words: mulched drip irrigation, cotton, irrigation water temperature, nitrogen fertilizer, yield, water and fertilizer use efficiency, Northern Xinjiang

Fig. 1

Daily air temperature and rainfall during cotton growth period in 2022"

Fig. 2

Planting pattern and distribution of soil moisture, temperature and respiration measurement points"

Fig. 3

Schematic diagram of water-heating drip irrigation system The arrows in the figure indicate the direction of water flow, and the meaning of the numbers is 1: Head water; 2: Solar heating device; 3: Water control valve; 4: Electric water heater; 5: Water storage barrel; 6: Mercurial thermometer; 7: Submersible pump; 8: Water meter; 9: Fertilization pot; 10: Water pipe; 11: Drip irrigation pipe"

Table 1

Average soil temperature in 0-20 cm soil layer for each growth stage of cotton under different treatments"

处理
Treatment
苗期
Seedling stage (℃)
蕾期
Budding stage (℃)
花铃期
Flowering and boll-forming stage (℃)
吐絮期
Boll-opening stage (℃)
T0F1 27.65±0.15d 26.11±0.12e 25.77±0.13e 22.52±0.15d
T0F2 27.64±0.08d 26.29±0.18e 25.81±0.14de 22.64±0.14d
T0F3 27.70±0.18d 26.24±0.06e 25.99±0.17d 22.68±0.09d
T1F1 28.92±0.07c 27.20±0.20d 26.38±0.11c 23.15±0.11c
T1F2 29.11±0.14c 27.29±0.12d 26.52±0.10c 23.19±0.15c
T1F3 28.99±0.11c 27.37±0.20d 26.42±0.16c 23.23±0.13c
T2F1 29.58±0.07b 28.35±0.12c 27.56±0.07b 24.17±0.14b
T2F2 29.75±0.12b 28.44±0.07c 27.76±0.12b 24.09±0.10b
T2F3 29.62±0.05b 28.74±0.10b 27.64±0.08b 24.28±0.07b
T3F1 30.93±0.09a 29.35±0.12a 28.58±0.08a 25.15±0.12a
T3F2 30.91±0.13a 29.44±0.15a 28.69±0.05a 25.26±0.10a
T3F3 31.06±0.10a 29.39±0.12a 28.54±0.14a 25.30±0.15a
T0 27.66±0.13d 26.22±0.12d 25.86±0.15d 22.61±0.13d
T1 29.01±0.10c 27.29±0.17c 26.44±0.12c 23.19±0.13c
T2 29.65±0.08b 28.51±0.10b 27.65±0.09b 24.18±0.10b
T3 30.97±0.11a 29.39±0.13a 28.60±0.09a 25.24±0.13a
F1 29.27±0.09a 27.75±0.14b 27.07±0.10b 23.75±0.13b
F2 29.35±0.12a 27.87±0.13ab 27.20±0.10ab 23.79±0.12ab
F3 29.34±0.11a 27.94±0.12a 27.15±0.14a 23.87±0.11a
FF value
T 1364.832** 942.301** 985.718** 786.447**
F ns 5.576* 3.459* ns
T×F ns ns ns ns

Fig. 4

The soil irrigation and storage amount under different treatments for each growth period of cotton SS, BS, FBS, and BOS represented the seedling stage, budding stage, flowering and boll-forming stage, boll-opening stage of cotton, respectively, and ns indicates not reaching the significant level. The same as below"

Table 2

Two-factor variance analysis of irrigation water temperature and nitrogen application on soil water storage at different growth periods of cotton"

因素
Factor
苗期
Seedling stage (mm)
蕾期
Budding stage (mm)
花铃期
Flowering and boll-forming stage (mm)
吐絮期
Boll-opening stage (mm)
T0 187.90±4.80a 196.83±6.31a 212.44±8.63a 153.87±6.33a
T1 186.82±3.47a 192.78±4.20ab 208.25±8.51ab 150.66±4.24a
T2 182.78±4.32a 187.50±6.50b 199.38±60.00b 148.19±8.81a
T3 184.93±9.19a 190.66±6.17ab 203.71±9.45ab 152.01±5.38a
F1 189.18±5.31a 196.15±5.12a 213.05±9.60a 152.25±6.75a
F2 184.96±4.31ab 191.71±7.24ab 206.03±9.53ab 151.80±6.37a
F3 182.68±6.71b 187.97±5.02b 198.76±5.31b 149.51±5.45a
FF value
T ns 3.645* 3.707* ns
F ns 5.309* 7.933** ns
T×F ns ns ns ns

Fig. 5

The soil respiration rate under different treatments for each growth period of cotton Different letters represent significant differences among treatments at 0.05 level"

Table 3

Two-factor variance analysis of irrigation water temperature and nitrogen application on cotton plant height and leaf area index at different growth periods"

因素
Factor
苗期
Seedling stage
蕾期
Budding stage
花铃期
Flowering and boll-forming stage
吐絮期
Boll-opening stage
株高
Plant height
(cm)
叶面积指数
LAI
(cm2·cm-2)
株高
Plant height
(cm)
叶面积指数
LAI
(cm2·cm-2)
株高
Plant height
(cm)
叶面积指数
LAI
(cm2·cm-2)
株高
Plant height
(cm)
叶面积指数
LAI
(cm2·cm-2)
T0 24.93±1.36b 0.45±0.06b 57.78±0.52c 2.20±0.10d 74.44±0.66d 3.62±0.15c 74.02±0.63d 2.09±0.18d
T1 27.19±1.54a 0.50±0.06ab 58.34±0.61c 2.55±0.12c 76.37±0.84c 4.25±0.16b 76.09±0.75c 2.61±0.13c
T2 27.57±2.05a 0.56±0.09a 61.11±1.10b 3.23±0.08a 77.19±0.81b 4.67±0.17a 78.23±0.73b 3.19±0.23a
T3 28.70±1.87a 0.55±0.06b 61.96±0.65a 3.08±0.05b 79.23±0.74a 4.34±0.10b 79.19±0.87a 2.97±0.19b
F1 25.98±1.32b 0.51±0.04a 58.44±0.66c 2.63±0.09c 74.80±0.85c 4.00±0.15c 75.42±0.64c 2.62±0.17b
F2 28.10±1.96a 0.52±0.10a 61.19±0.94a 2.74±0.07b 78.47±0.71a 4.23±0.17b 78.18±0.87a 2.70±0.16ab
F3 27.21±1.83ab 0.52±0.07a 59.76±0.56b 2.93±0.09a 77.16±0.72b 4.43±0.12a 77.06±0.72b 2.83±0.21a
F F value
T 7.192** 4.332* 61.304** 236.276** 55.858** 72.438** 78.265** 57.920**
F 4.378* ns 36.813** 32.269** 65.408** 24.173** 37.969** 3.747*
T×F ns ns ns ns 8.584** ns 4.683** ns

Fig. 6

The plant height and leaf area index of cotton under different treatments for each growth period"

Table 4

Cotton above-ground dry matter accumulation for different treatments"

处理
Treatment
实际种植密度
Practical planting density
(×104·hm-2)

Stem
(kg·hm-2)

Leaf
(kg·hm-2)

Boll
(kg·hm-2)
群体干物质
Population dry matter
(kg·hm-2)
T0F1 20.74±0.08d 4352.9±109.3d 2763.0±98.1e 9444.7±135.8e 16560.6±188.7f
T0F2 20.70±0.04d 4358.2±62.3d 2810.4±120.3de 9503.1±65.0d 16671.7±184.7f
T0F3 20.73±0.04d 4368.8±159.5d 2927.4±44.5cde 9521.0±9.8d 16817.3±131.4f
T1F1 21.18±0.01c 4474.0±141.8d 3119.8±154.4bc 9835.7±25.6c 17429.5±222.5e
T1F2 21.18±0.05c 4538.5±145.2bcd 3125.5±102.9bc 9867.5±32.2abc 17531.5±277.1e
T1F3 21.25±0.01c 4599.5±85.7bcd 3214.8±105.9b 9909.4±25.5abc 17723.7±60.3e
T2F1 22.12±0.03b 4926.9±55.7abc 3228.8±67.3bc 10319.0±26.5abc 18474.7±114.7d
T2F2 22.12±0.04b 5024.2±60.5a 3256.0±67.7bc 10358.1±40.6ab 18638.3±84.7cd
T2F3 22.14±0.05b 5043.2±85.2a 3585.2±116.1a 10381.8±26.2a 19010.2±174.5bcd
T3F1 22.61±0.02a 4835.2±86.2cd 3021.2±88.8e 10484.1±26.6c 18340.4±95.4abc
T3F2 22.59±0.01a 5017.6±134.7abc 3240.5±92.7bcd 10497.8±10.6bc 18755.8±215.5ab
T3F3 22.61±0.02a 5051.4±65.6ab 3266.0±104.5bc 10551.9±18.8abc 18869.3±145.1a
T0 20.72±0.05d 4360.0±110.4c 2833.6±87.6c 9489.6±70.2d 16683.2±168.3c
T1 21.21±0.03c 4537.3±124.2b 3153.4±121.0b 9870.9±27.8c 17561.6±186.6b
T2 22.13±0.04b 4998.1±67.1a 3356.7±83.7a 10352.9±31.1b 18707.7±124.6a
T3 22.60±0.02a 4968.1±95.5a 3175.9±95.3b 10511.3±18.7a 18655.2±152.0a
F1 21.66±0.04a 4647.3±98.2b 3033.2±102.1b 10020.9±53.6b 17701.3±155.3c
F2 21.65±0.03a 4734.7±100.6ab 3108.1±95.9b 10056.6±37.1ab 17899.4±190.5b
F3 21.68±0.03a 4765.7±99.0a 3248.4±92.8a 10091.0±20.1a 18105.1±127.8a
FF value
T 4212.807** 17.025** 20.610** 42.171** 294.691**
F ns 3.657* 13.716** 6.470** 17.055**
T×F ns ns ns ns ns

Table 5

Effects of different treatments on cotton yield, yield components, water use efficiency, and nitrogen partial fertilizer productivity"

处理
Treatment
籽棉产量
Seed cotton yield (kg·hm-2)
单株有效铃数
Effective bolls per plant
单铃重
Single boll weight (g)
水分利用效率
WUE (kg·m-3)
氮肥偏生产力
Npfp (kg·kg-1)
T0F1 5124.9±66.9i 6.3±0.2g 5.52±0.18d 0.90±0.03h 20.50±0.27e
T0F2 5476.2±23.5h 6.8±0.1f 5.99±0.11b 0.97±0.01g 18.25±0.08h
T0F3 5610.3±62.0g 7.2±0.1e 6.30±0.08a 0.99±0.02fg 16.03±0.18j
T1F1 5612.5±30.7g 7.4±0.2e 5.43±0.09d 0.98±0.02g 22.45±0.12c
T1F2 5981.4±57.5e 7.9±0.1d 5.73±0.05c 1.05±0.01de 19.94±0.19f
T1F3 6115.0±42.2d 8.1±0.3cd 5.86±0.06bc 1.08±0.02d 17.47±0.12i
T2F1 6049.1±43.1de 8.3±0.1bc 4.97±0.02f 1.06±0.01d 24.20±0.17a
T2F2 6652.3±62.0a 8.7±0.4ab 5.18±0.12e 1.17±0.02a 22.17±0.21c
T2F3 6581.5±71.9a 8.9±0.1a 5.22±0.13e 1.16±0.02ab 18.80±0.21g
T3F1 5837.0±56.6f 8.3±0.2bc 4.75±0.11g 1.03±0.02ef 23.35±0.23b
T3F2 6266.6±70.2c 8.5±0.4abc 4.94±0.06f 1.11±0.03c 20.89±0.23d
T3F3 6426.1±64.7b 8.6±0.4ab 5.17±0.11e 1.14±0.01bc 18.36±0.18h
T0 5403.8±50.8d 6.7±0.2c 5.94±0.12a 0.95±0.02d 18.26±0.17d
T1 5903.0±43.5c 7.8±0.2b 5.67±0.07b 1.04±0.02c 19.95±0.14c
T2 6427.7±59.0a 8.6±0.2a 5.12±0.09c 1.13±0.02a 21.72±0.20a
T3 6176.6±63.8b 8.5±0.3a 4.95±0.09d 1.09±0.02b 20.86±0.22b
F1 5655.9±49.3c 7.56±0.2c 5.17±0.10c 0.99±0.02b 22.62±0.20a
F2 6094.1±53.3b 7.9±0.2b 5.46±0.08b 1.08±0.02a 20.31±0.18b
F3 6183.2±60.2a 8.2±0.2a 5.64±0.01a 1.09±0.02a 17.67±0.17c
FF value
T 545.393** 127.112** 181.520** 137.797** 549.981**
F 301.292** 21.334** 64.845** 86.902** 2056.506**
T×F 4.219** ns 3.724** ns 6.158**

Fig. 7

Path analysis of relationship between different indexes and yield of cotton and represent the positive direct path coefficient and the negative direct path coefficient respectively, and represent the positive indirect path coefficient and the negative indirect path coefficient respectively, and represents the correlation coefficient between different indicators"

[1]
HUANG G, WU Z G, PERCY R G, BAI M Z, LI Y, FRELICHOWSKI J E, HU J, WANG K, YU J Z, ZHU Y X. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics, 2020, 52(5): 516-524.

doi: 10.1038/s41588-020-0607-4
[2]
朱豫. 新疆棉花产量全国90.2%创历史新高. 新华网: [2022-12-27]. http://www.news.cn/local/2022-12-27/c1129236779.html.
ZHU Y. Xinjiang cotton production of 90.2% of the country's record high[EB/OL]. Xinhua Net: [2022-12-27]. http://www.news.cn/local/2022-12-27/c1129236779.htm. (in Chinese)
[3]
于江海, 周和平. 农业灌溉水温研究. 现代农业科技, 2008(8): 123-125, 127.
YU J H, ZHOU H P. Study on water temperature of agricultural irrigation. Xiandai Nongye Keji, 2008(8): 123-125, 127. (in Chinese)
[4]
孟阿静, 严晶, 库德热提·巴吾东, 顾成刚, 王治国, 付彦博, 饶晓娟, 盛建东, 冯耀祖. 增温水灌溉对棉花根际土壤养分和土壤微生物数量的影响. 新疆农业科学, 2017, 54(2): 336-342.
MENG A J, YAN J, KUDERETI BAWUDON, GU C G, WANG Z G, FU Y B, YAO X J, SHENG J D, FENG Y Z. Effects of temperature- increasing water irrigation on soil nutrients and soil microbial biomass in cotton rhizosphere. Xinjiang Agricultural Sciences, 2017, 54(2): 336-342. (in Chinese)
[5]
颜晓元, 夏龙龙, 遆超普. 面向作物产量和环境双赢的氮肥施用策略. 中国科学院院刊, 2018, 33(2): 177-183.
YAN X Y, XIA L L, TI C P. Win-win nitrogen management practices for improving crop yield and environmental sustainability. Bulletin of the Chinese Academy of Sciences, 2018, 33(2): 177-183. (in Chinese)
[6]
ZONG R, WANG Z H, WU Q, GUO L, LIN H. Characteristics of carbon emissions in cotton fields under mulched drip irrigation. Agricultural Water Management, 2020, 231: 105992.

doi: 10.1016/j.agwat.2019.105992
[7]
李志博, 韩强, 火照兰, 魏亦农, 曹连蒲. 低温弱光对棉花幼苗生长及某些光合特性的影响. 中国棉花, 2009, 36(4): 13-15.

doi: 10.11963/issn.1000-632X.20090405
LI Z B, HAN Q, HUO Z L, WEI Y N, CAO L P. Effects of low temperature and weak light on growth and some photosynthetic characteristics of cotton seedlings. China Cotton, 2009, 36(4): 13-15. (in Chinese)
[8]
王振华, 武小荻, 王天宇, 宗睿, 王东旺, 陈睿. 灌溉时段及水温对膜下滴灌棉花生长及产量的影响. 排灌机械工程学报, 2022, 40(10): 1040-1047.
WANG Z H, WU X D, WANG T Y, ZONG R, WANG D W, CHEN R. Effects of irrigation timing and water temperature on cotton growth and yield under mulched drip irrigation. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(10): 1040-1047. (in Chinese)
[9]
孟阿静, 齐莹莹, 付彦博, 王治国, 王新勇, 冯耀祖. 增温水滴灌对棉花生物量、养分吸收及产量的影响. 新疆农业科学, 2022, 59(3): 558-566.

doi: 10.6048/j.issn.1001-4330.2022.03.005
MENG A J, QI Y Y, FU Y B, WANG Z G, WANG X Y, FENG Y Z. Effects of warming irrigation on biomass, nutrient uptake and yield of cotton. Xinjiang Agricultural Sciences, 2022, 59(3): 558-566. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2022.03.005
[10]
随龙龙, 田景山, 姚贺盛, 张鹏鹏, 梁福斌, 王进, 张旺锋. 播期温度对新疆膜下滴灌棉花出苗率及苗期生长的影响. 中国农业科学, 2018, 51(21): 4040-4051. doi: 10.3864/j.issn.0578-1752.2018.21.004.
SUI L L, TIAN J S, YAO H S, ZHANG P P, LIANG F B, WANG J, ZHANG W F. Effects of different sowing dates on emergence rates and seedling growth of cotton under mulched drip irrigation in Xinjiang. Scientia Agricultura Sinica, 2018, 51(21): 4040-4051. doi: 10.3864/j.issn.0578-1752.2018.21.004. (in Chinese)
[11]
ULLAH K, KHAN N, USMAN Z, ULLAH R, SALEEM F Y, SHAH S A I, SALMAN M. Impact of temperature on yield and related traits in cotton genotypes. Journal of Integrative Agriculture, 2016, 15(3): 678-683.

doi: 10.1016/S2095-3119(15)61088-7
[12]
沈倩, 张思平, 刘瑞华, 刘绍东, 陈静, 葛常伟, 马慧娟, 赵新华, 杨国正, 宋美珍, 庞朝友. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选. 中国农业科学, 2022, 55(22): 4342-4355. doi: 10.3864/j.issn.0578-1752.2022.22.002.
SHEN Q, ZHANG S P, LIU R H, LIU S D, CHEN J, GE C W, MA H J, ZHAO X H, YANG G Z, SONG M Z, PANG C Y. Construction of A comprehensive evaluation system and screening of cold tolerance indicators for cold tolerance of cotton at seedling emergence stage. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355. doi: 10.3864/j.issn.0578-1752.2022.22.002. (in Chinese)
[13]
马永康, 王振华, 宗霞, 李海强, 常宏达. 增温滴灌下有机肥配施对骏枣产量品质的影响. 干旱区资源与环境, 2022, 36(9): 186-193.
MA Y K, WANG Z H, ZONG X, LI H Q, CHANG H D. Effects of organic fertilizer combining with warming drip irrigation on yield and quality of Jun jujube. Journal of Arid Land Resources and Environment, 2022, 36(9): 186-193. (in Chinese)
[14]
孙啸震, 张黎妮, 戴艳娇, 贺新颖, 周治国, 王友华. 花铃期增温对棉花干物重累积的影响及其生理机制. 作物学报, 2012, 38(4): 683-690.
SUN X Z, ZHANG L N, DAI Y J, HE X Y, ZHOU Z G, WANG Y H. Effect of increased canopy temperature on cotton plant dry matter accumulation and its physiological mechanism. Acta Agronomica Sinica, 2012, 38(4): 683-690. (in Chinese)

doi: 10.3724/SP.J.1006.2012.00683
[15]
JIA Y, WANG J, QU Z, ZOU D, SHA H, LIU H, SUN J, ZHENG H, WANG J, YANG L, ZHAO H. Effects of low water temperature during reproductive growth on photosynthetic production and nitrogen accumulation in rice. Field Crops Research, 2019, 242: 107587.

doi: 10.1016/j.fcr.2019.107587
[16]
JIA Y, ZOU D T, WANG J G, LIU H L, ALI INAYAT M, SHA H J, ZHENG H L, SUN J, ZHAO H W. Effect of low water temperature at reproductive stage on yield and glutamate metabolism of rice (Oryza sativa L.) in China. Field Crops Research, 2015, 175: 16-25.

doi: 10.1016/j.fcr.2015.01.004
[17]
胡智临, 张春, 贾志宽. 半干旱区不同施肥量对旱作冬小麦田土壤呼吸的影响. 干旱地区农业研究, 2021, 39(6): 215-223.
HU Z L, ZHANG C, JIA Z K. Effects of different fertilizer application rates on soil respiration of dryland winter wheat fields in semi-arid area. Agricultural Research in the Arid Areas, 2021, 39(6): 215-223. (in Chinese)
[18]
薛鹤, 段增强, 董金龙, 王嫒华, 李汛, 邢鹏. 根区温度对黄瓜生长、产量及氮肥利用率的影响. 土壤, 2015, 47(5): 842-846.
XUE H, DUAN Z Q, DONG J L, WANG A H, LI X, XING P. Effects of root zone temperature on growth, yield and nitrogen use efficiency of cucumber. Soils, 2015, 47(5): 842-846. (in Chinese)
[19]
王平, 陈新平, 田长彦, 张福锁. 不同水氮管理对棉花产量、品质及养分平衡的影响. 中国农业科学, 2005, 38(4): 761-769.
WANG P, CHEN X P, TIAN C Y, ZHANG F S. Effect of different irrigation and fertilization strategies on yield, fiber quality and nitrogen balance of high-yield cotton system. Scientia Agricultura Sinica, 2005, 38(4): 761-769. (in Chinese)
[20]
文明, 李明华, 蒋家乐, 马学花, 李容望, 赵文青, 崔静, 刘扬, 马富裕. 氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响. 中国农业科学, 2021, 54(16): 3473-3487. doi: 10.3864/j.issn.0578-1752.2021.16.010.
WEN M, LI M H, JIANG J L, MA X H, LI R W, ZHAO W Q, CUI J, LIU Y, MA F Y. Effects of nitrogen, phosphorus and potassium on drip-irrigated cotton growth and yield in northern Xinjiang. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487. doi: 10.3864/j.issn.0578-1752.2021.16.010. (in Chinese)
[21]
李鹏程, 董合林, 刘爱忠, 刘敬然, 孙淼, 王国平, 刘绍东, 赵新华, 李亚兵. 种植密度氮肥互作对棉花产量及氮素利用效率的影响. 农业工程学报, 2015, 31(23): 122-130.
LI P C, DONG H L, LIU A Z, LIU J R, SUN M, WANG G P, LIU S D, ZHAO X H, LI Y B. Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 122-130. (in Chinese)
[22]
贾彪, 钱瑾, 马富裕. 氮素对膜下滴灌棉花叶面积指数的影响. 农业机械学报, 2015, 46(2): 79-87.
JIA B, QIAN J, MA F Y. Simulating effects of nitrogen on leaf area index of cotton under mulched drip irrigation. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 79-87. (in Chinese)
[23]
田雨, 王方永, 罗宏海, 韩焕勇. 增效缩节胺化学封顶对不同施氮量条件下棉花群体生长特征的影响. 西北农业学报, 2020, 29(4): 559-569.
TIAN Y, WANG F Y, LUO H H, HAN H Y. Effect of DPC+ chemical capping on group growth characteristics of cotton under different application amounts of nitrogen condition. Acta Agriculturae Boreali- Occidentalis Sinica, 2020, 29(4): 559-569. (in Chinese)
[24]
刘敬然, 赵文青, 周治国, 董合林, 赵新华, 孟亚利. 施氮量与播种期对棉花产量和品质及棉铃对位叶光合产物的影响. 植物营养与肥料学报, 2015, 21(4): 951-961.
LIU J R, ZHAO W Q, ZHOU Z G, DONG H L, ZHAO X H, MENG Y L. Effects of nitrogen rates and planting dates on yield, quality and photosynthate contents in the subtending leaves of cotton boll. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 951-961. (in Chinese)
[25]
胡婧娟. 越冬期日光温室灌溉水升温灌溉集成技术研究[D]. 太原: 太原理工大学.
HU J J. Study on integrated technology of irrigation water heating irrigation in solar greenhouse during wintering period[D]. Taiyuan: Taiyuan University of Technology. (in Chinese)
[26]
李明, 崔世茂, 王怀栋, 张娇丽, 蔡秀丽. 不同灌溉水温对温室黄瓜幼苗动态生长的影响. 灌溉排水学报, 2012, 31(2): 131-133.
LI M, CUI S M, WANG H D, ZHANG J L, CAI X L. Effect of irrigation water temperature on dynamic growth of cucumber seeding in greenhouse. Journal of Irrigation and Drainage, 2012, 31(2): 131-133. (in Chinese)
[27]
马凯, 王振华, 王天宇, 宗睿, 王东旺. 水氮耦合对微咸水膜下滴灌棉花光合特性及产量的影响. 西北农业学报, 2022, 31(5): 559-568.
MA K, WANG Z H, WANG T Y, ZONG R, WANG D W. Effects of water and nitrogen coupling on photosynthetic characteristics and yield of film mulching cotton under brackish water drip irrigation. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(5): 559-568. (in Chinese)
[28]
李明思, 郑旭荣, 贾宏伟, 扬国跃. 棉花膜下滴灌灌溉制度试验研究. 中国农村水利水电, 2001(11): 13-15.
LI M S, ZHENG X R, JIA H W, YANG G Y. Experimental research on under-mulch drip irrigation regime for cotton. China Rural Water and Hydropower, 2001(11): 13-15. (in Chinese)
[29]
邬强, 王振华, 郑旭荣, 张金珠, 李文昊. PBAT生物降解膜覆盖对绿洲滴灌棉花土壤水热及产量的影响. 农业工程学报, 2017, 33(16): 135-143.
WU Q, WANG Z H, ZHENG X R, ZHANG J Z, LI W H. Effects of biodegradation film mulching on soil temperature, moisture and yield of cotton under drip irrigation in typical oasis area. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 135-143. (in Chinese)
[30]
WANG M, LIU X T, ZHANG J T, LI X J, WANG G D, LI X Y, LU X R. Diurnal and seasonal dynamics of soil respiration at temperate Leymus chinensis meadow steppes in western Songnen Plain, China. Chinese Geographical Science, 2014, 24(3): 287-296.

doi: 10.1007/s11769-014-0682-5
[31]
赵嘉涛, 马玉诏, 范艳丽, 刘俊梅, 李全起. 生物可降解地膜对棉花产量及水分利用效率的影响. 排灌机械工程学报, 2021, 39(1): 96-101.
ZHAO J T, MA Y Z, FAN Y L, LIU J M, LI Q Q. Effects of biodegradable mulch on cotton yield and water use efficiency. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(1): 96-101. (in Chinese)
[32]
JIA B, ZHOU G, WANG Y, WANG F, WANG X. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 2006, 67(1): 60-76.

doi: 10.1016/j.jaridenv.2006.02.002
[33]
张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响. 中国农业科学, 2022, 55(3): 479-490. doi: 10.3864/j.issn.0578-1752.2022.03.005.
ZHANG J J, DANG Y, ZHAO G, WANG L, FAN T L, LI S Z. Influences of mulching periods and nitrogen application rates on maize yield as well as water and nitrogen use efficiencies in loess plateau of eastern Gansu Province. Scientia Agricultura Sinica, 2022, 55(3): 479-490. doi: 10.3864/j.issn.0578-1752.2022.03.005. (in Chinese)
[34]
LUO Y Q, ZHOU X H. Soil Respiration and the Environment. Academic Press, 2006.
[35]
胡文沛, 张闯, 胡春胜, 董文旭, 王玉英. 长期增温和施氮对华北平原农田土壤呼吸及其温度敏感性的影响. 中国生态农业学报(中英文), 2022(5): 761-768.
HU W P, ZHANG C, HU C S, DONG W X, WANG Y Y. Effects of long-term warming and nitrogen fertilization on soil respiration and temperature sensitivity in the North China Plain. Chinese Journal of Eco-Agriculture, 2022(5): 761-768. (in Chinese)
[36]
丁杰萍, 罗永清, 周欣, 岳祥飞, 连杰. 植物根系呼吸研究方法及影响因素研究进展. 草业学报, 2015, 24(5): 206-216.

doi: 10.11686/cyxb20150524
DING J P, LUO Y Q, ZHOU X, YUE X F, LIAN J. Review of methodology and factors influencing plant root respiration. Acta Prataculturae Sinica, 2015, 24(5): 206-216. (in Chinese)
[37]
胡明慧, 赵建琪, 王玄, 熊鑫, 张慧玲, 褚国伟, 孟泽, 张德强. 自然增温对南亚热带森林土壤微生物群落与有机碳代谢功能基因的影响. 生态学报, 2022, 42(1): 359-369.
HU M H, ZHAO J Q, WANG X, XIONG X, ZHANG H L, CHU G W, MENG Z, ZHANG D Q. Effects of natural warming on soil microorganisms communities and functional genes of soil organic carbon metabolism in subtropical forests. Acta Ecologica Sinica, 2022, 42(1): 359-369. (in Chinese)
[38]
高志建, 尹飞虎, 刘瑜, 李晓兰. 滴灌棉花光合特性、生物量及产量对铵态氮、酰胺态氮的响应研究. 新疆农业科学, 2015, 52(1): 1-6.
GAO Z J, YIN F H, LIU Y, LI X L. Response of photosynthetic characteristics, biomass and yield on drip irrigation cotton to ammonium and amide nitrogen. Xinjiang Agricultural Sciences, 2015, 52(1): 1-6. (in Chinese)
[39]
曾清苹, 何丙辉, 毛巧芝, 秦华军, 李源, 黄祺. 重庆缙云山两种林分土壤呼吸对模拟氮沉降的季节响应差异性. 生态学报, 2016, 36(11): 3244-3252.
ZENG Q P, HE B H, MAO Q Z, QIN H J, LI Y, HUANG Q. Seasonal responses of soil respiration to simulated nitrogen deposition in a citrus plantation and Masson pine forest in Jinyun, Chongqing, China. Acta Ecologica Sinica, 2016, 36(11): 3244-3252. (in Chinese)
[40]
胡洋, 丛孟菲, 马雯琪, 李典鹏, 愚广灵, 孙霞, 陈署晃, 贾宏涛. 化肥减施对冬小麦土壤呼吸的影响. 中国土壤与肥料, 2022(2): 1-8.
HU Y, CONG M F, MA W Q, LI D P, YU G L, SUN X, CHEN S H, JIA H T. Effect of fertilizer reduction on soil respiration of winter wheat. Soil and Fertilizer Sciences in China, 2022(2): 1-8. (in Chinese)
[41]
张前兵, 杨玲, 王进, 罗宏海, 张亚黎, 张旺锋. 干旱区不同灌溉方式及施肥措施对棉田土壤呼吸及各组分贡献的影响. 中国农业科学, 2012, 45(12): 2420-2430. doi: 10.3864/j.issn.0578-1752.2012.12.010.
ZHANG Q B, YANG L, WANG J, LUO H H, ZHANG Y L, ZHANG W F. Effects of different irrigation methods and fertilization measures on soil respiration and its component contributions in cotton field in arid region. Scientia Agricultura Sinica, 2012, 45(12): 2420-2430. doi: 10.3864/j.issn.0578-1752.2012.12.010. (in Chinese)
[42]
张彦军. 长期施肥对休闲季土壤呼吸温度敏感性的影响. 中国农业科学, 2017, 50(16): 3164-3174. doi: 10.3864/j.issn.0578-1752.2017.16.011.
ZHANG Y J. Effect of long-term fertilization on temperature sensitivity of soil respiration during fallow season. Scientia Agricultura Sinica, 2017, 50(16): 3164-3174. doi: 10.3864/j.issn.0578-1752.2017.16.011. (in Chinese)
[43]
冯玉龙, 刘恩举, 孙国斌. 根系温度对植物的影响(Ⅰ):根温对植物生长及光合作用的影响. 东北林业大学学报, 1995, 23(3): 63-69.
FENG Y L, LIU E J, SUN G. Influence of temperature of root system on plant (I): Influence of root temperature on plant growth and photosynthesis. Journal of Northeast Forestry University, 1995, 23(3): 63-69. (in Chinese)
[44]
史普想, 刘盈茹, 张晓军, 王月福, 王铭伦. 低温水灌溉对花生根际土壤酶活性和养分含量的影响. 中国油料作物学报, 2016, 38(6): 811-816.

doi: 10.7505/j.issn.1007-9084.2016.06.015
SHI P X, LIU Y R, ZHANG X J, WANG Y F, WANG M L. Effects of irrigation with low temperature water on soil enzyme activity and soil nutrient of peanut rhizosphere. Chinese Journal of Oil Crop Sciences, 2016, 38(6): 811-816. (in Chinese)
[45]
尔晨, 林涛, 夏文, 张昊, 徐高羽, 汤秋香. 灌溉定额和施氮量对机采棉田水分运移及硝态氮残留的影响. 作物学报, 2022, 48(2): 497-510.

doi: 10.3724/SP.J.1006.2022.04277
ER C, LIN T, XIA W, ZHANG H, XU G Y, TANG Q X. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton. Acta Agronomica Sinica, 2022, 48(2): 497-510. (in Chinese)

doi: 10.3724/SP.J.1006.2022.04277
[46]
张宏, 曾雄, 王爱莲, 哈丽哈什·依巴提, 李青军, 张炎. 不同施氮量对棉花产量、养分吸收及氮素利用的影响. 新疆农业科学, 2021, 58(9): 1656-1664.

doi: 10.6048/j.issn.1001-4330.2021.09.011
ZHANG H, ZENG X, WANG A L, HALIHASHI YIBATI, LI Q J, ZHANG Y. Effects of different nitrogen application rates on yield, nutrient uptake and nitrogen utilization of cotton in southern Xinjiang. Xinjiang Agricultural Sciences, 2021, 58(9): 1656-1664. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2021.09.011
[47]
司转运, 高阳, 申孝军, 刘浩, 龚雪文, 段爱旺. 水氮供应对夏棉产量、水氮利用及土壤硝态氮累积的影响. 应用生态学报, 2017, 28(12): 3945-3954.

doi: 10.13287/j.1001-9332.201712.022
SI Z Y, GAO Y, SHEN X J, LIU H, GONG X W, DUAN A W. Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton. Chinese Journal of Applied Ecology, 2017, 28(12): 3945-3954. (in Chinese)

doi: 10.13287/j.1001-9332.201712.022
[48]
田晓飞, 李成亮, 张民, 谢志华, 路艳艳, 郑文魁, 耿计彪. 控释氮肥对洋葱-棉花套作体系产量及土壤氮含量的影响. 农业环境科学学报, 2015, 34(4): 745-752.
TIAN X F, LI C L, ZHANG M, XIE Z H, LU Y Y, ZHENG W K, GENG J B. Effects of controlled-release nitrogen fertilizer on yields and soil nitrogen in onion-cotton intercropping system. Journal of Agro-Environment Science, 2015, 34(4): 745-752. (in Chinese)
[49]
李培岭, 张富仓. 根系分区交替滴灌下水氮耦合对棉花氮素利用效率的影响. 农业工程学报, 2012, 28(S1): 112-116.
LI P L, ZHANG F C. Effects of water and nitrogen coupling on cotton nitrogen absorption and utilization under alternate root partition drip. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(S1): 112-116. (in Chinese)
[50]
马宗斌, 严根土, 刘桂珍, 黄群, 李伶俐, 朱伟. 施氮量对黄河滩区棉花叶片生理特性、干物质积累及产量的影响. 植物营养与肥料学报, 2013, 19(4): 849-857.
MA Z B, YAN G T, LIU G Z, HUANG Q, LI L L, ZHU W. Effects of nitrogen application rates on main physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomlands. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 849-857. (in Chinese)
[51]
王全九, 王康, 苏李君, 张继红, 韦开. 灌溉施氮和种植密度对棉花叶面积指数与产量的影响. 农业机械学报, 2021, 52(12): 300-312.
WANG Q J, WANG K, SU L J, ZHANG J H, WEI K. Effect of irrigation amount, nitrogen application rate and planting density on cotton leaf area index and yield. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 300-312. (in Chinese)
[52]
邓忠, 白丹, 翟国亮, 宗洁, 李迎, 蔡九茂, 冯俊杰. 膜下滴灌水氮调控对南疆棉花产量及水氮利用率的影响. 应用生态学报, 2013, 24(9): 2525-2532.
DENG Z, BAI D, ZHAI G L, ZONG J, LI Y, CAI J M, FENG J J. Effects of water and nitrogen regulation on the yield and water and nitrogen use efficiency of cotton in South Xinjiang, Northwest China under plastic mulched drip irrigation. Chinese Journal of Applied Ecology, 2013, 24(9): 2525-2532. (in Chinese)
[53]
吴立峰, 张富仓, 范军亮, 周罕觅, 梁飞, 高志建. 水肥耦合对棉花产量、收益及水分利用效率的效应. 农业机械学报, 2015, 46(12): 164-172.
WU L F, ZHANG F C, FAN J L, ZHOU H M, LIANG F, GAO Z J. Effects of water and fertilizer coupling on cotton yield, net benefits and water use efficiency. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 164-172. (in Chinese)
[54]
王振华, 陈潇洁, 吕德生, 李文昊, 王天宇, 魏驰林. 水肥耦合对加气滴灌加工番茄产量及品质的影响. 农业工程学报, 2020, 36(19): 66-75.
WANG Z H, CHEN X J, D S, LI W H, WANG T Y, WEI C L. Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 66-75. (in Chinese)
[55]
邢英英, 张富仓, 吴立峰, 范军亮, 张燕, 李静. 基于番茄产量品质水肥利用效率确定适宜滴灌灌水施肥量. 农业工程学报, 2015, 31(S1): 110-121.
XING Y Y, ZHANG F C, WU L F, FAN J L, ZHANG Y, LI J. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(S1): 110-121. (in Chinese)
[1] LEI XinHui, WU YiXin, WANG JiaLe, TAO JinCai, WAN ChenXi, WANG Meng, GAO XiaoLi, FENG BaiLi, GAO JinFeng. Effects of Planting Density and Fertilization Level on Photosynthesis, Yield and Lodging Resistance of Common Buckwheat [J]. Scientia Agricultura Sinica, 2024, 57(2): 264-277.
[2] DONG ErWei, WANG Yuan, WANG JinSong, LIU QiuXia, HUANG XiaoLei, JIAO XiaoYan. Effects of Nitrogen Fertilization Levels on Grain Yield, Plant Nitrogen Utilization Characteristics and Grain Quality of Foxtail Millet [J]. Scientia Agricultura Sinica, 2024, 57(2): 306-318.
[3] QIN Feng, WANG XiaoFei, WU Zhen, HU YiBo, WANG XiaoQin, ZHANG JiaWei, CAI Tie. Effects of Planting Density and Row Spacing Configuration on Sugar Accumulation and Lodging Performance of Wheat Stem Under Rainfall Harvesting Planting Mode [J]. Scientia Agricultura Sinica, 2024, 57(1): 65-79.
[4] SHI HaoLei, CAO HongXia, ZHANG WeiJie, ZHU Shan, HE ZiJian, ZHANG Ze. Leaf Area Index Inversion of Cotton Based on Drone Multi-Spectral and Multiple Growth Stages [J]. Scientia Agricultura Sinica, 2024, 57(1): 80-95.
[5] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[6] KAN JiaQiang, LIU Yu, ZHOU ZhiGuo, CHEN BingLin, ZHAO WenQing, HU Wei, HU ShaoHong, CHEN Yang, WANG YouHua. Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves [J]. Scientia Agricultura Sinica, 2023, 56(9): 1658-1669.
[7] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[8] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[9] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[10] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[11] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[12] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[13] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[14] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[15] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!