Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 572-586.doi: 10.3864/j.issn.0578-1752.2023.03.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck

SUN YanFa1,2(), WU Qiong1,2, LIN RuLong3, CHEN HongPing3, GAN QiuYun1, SHEN Yue1, WANG YaRu1, XUE PengFei1, CHEN FeiFan1, LIU JianTao1, ZHOU ChenXin1, LAN ShiShi1, PAN HaoZhe1, DENG Fan1,5, YUE Wen3, JIANG XiaoBing4(), LI Yan1,2()   

  1. 1College of Life Sciences, Longyan University, Longyan 364012, Fujian
    2Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology/Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology/Longyan University, Longyan 364012, Fujian
    3Longyan Shan-Ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan 364031, Fujian
    4Fujian Provincial Animal Husbandry Headquarters, Fuzhou 350003
    5College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2021-10-20 Accepted:2022-11-16 Online:2023-02-01 Published:2023-02-14
  • Contact: JIANG XiaoBing, LI Yan E-mail:boysun2010@163.com;fzjxb@163.com;529783204@qq.com

Abstract:

【Objective】Single nucleotide polymorphisms (SNPs) and candidate genes for egg quality traits in duck were identified through genome-wide association study (GWAS) technology, so as to provide reference for molecular breeding to improve egg quality traits of Longyan Shan-Ma Duck.【Method】Egg quality traits of 235 female Longyan Shan-Ma Duck were measured, including egg weight (EW), egg shaped index (ESI), eggshell thickness (EST), eggshell strength (ESS), eggshell colour L* (ESCL), a* (ESCA), b* (ESCB), albumin height (AH), Haugh unit (HU), egg yolk colour (EYC), egg yolk weight (EYW), and egg yolk percentage relative to egg weight (EYP). Genetic parameters of these traits were estimated using multi-trait animal model by ASReml-R 4.1 software. Blood genomic DNAs of these ducks were genotyped using genotyping-by-sequencing (GBS) technology. The GWAS between egg quality traits of the late laying period and SNPs were performed. 【Result】 The heritability of EW, ESI, EST, ESL, ESA and AU was higher among the egg quality traits of Longyan Shan-Ma Duck, and ranged from 0.21 to 0.70. There was a strong positive genetic correlation (rg = 0.91±0.37) between EW and AU, a strong negative genetic correlation (rg = -0.98±1.03) between ESI and EYC. EST had a positive phenotypic correlation (rp = 0.41±0.06) with ESS, negative genetic and phenotypic correlations with ESA (rg = -0.86±0.25 and rp = -0.15±0.07), and positive genetic and phenotypic correlations with ESB (rg= 0.96±0.37 and 0.18±0.07). There were negative genetic and phenotypic correlations between ESA and ESB (rg = -0.64±0.28 and rp = -0.31±0.06). Results from the GWAS showed that seven SNPs were significantly associated with ESI, EST and yolk color (YC) at 5% Bonferroni-corrected genome-wide significance level (P<4.74×10-6), involving six candidate genes. One SNP, chr20:11135563: G:C, was associated with ESI, which was in leucine rich repeat containing 75A gene, located on chromosome 20. Two SNPs, chr13:5766560:A:G and chrZ:968819:C:T, were associated with EST, which were located on chromosome 13, downstream 6.86 Kb of LOC106014427 and in transcription factor 4 gene, respectively. Four SNPs were associated with EYC, one SNP chr2: 38155965:G:A in potassium voltage-gated channel subfamily H member 8 gene located on chromosome 2; three SNPs located on chromosome 9, two SNPs, chr9:22623156:G:A and chr9:22623155:T:C, in insulin receptor substrate 1 gene, and one SNP, chr9:22490158:A:T, in LOC106018641 gene. Eighty-one SNPs associated with egg quality traits reached at suggestive genome-wide significance level (P<9.48×10-5) were also found. Thirteen SNPs associated with YC were distributed in the 0.84 Mb (22.16-23.00 Mb) region of chromosome 9.【Conclusion】In this study, genetic parameters of egg quality traits of Longyan Shan-Ma Duck were estimated. Seven significant SNPs, six candidate genes, and one candidate region affecting ESI, EST and EYC traits were identified through GWAS. The findings from the present study provided a reference for the molecular breeding of egg quality traits in Longyan Shan-Ma Duck.

Key words: Longyan Shan-Ma Duck, egg quality traits, genetic parameter, SNPs, GWAS

Table 1

Descriptive statistics of egg quality traits"

性状
Trait
例数
N
平均值
Mean
最小值
Min
最大值
Max
标准差
SD
变异系数
CV(%)
蛋重EW (g) 235 69.70 51.30 84.30 5.28 7.57
蛋形指数ESI 235 1.33 1.15 1.50 0.06 4.52
蛋壳厚EST (mm) 235 0.33 0.20 0.44 0.04 10.68
蛋壳强度ESS (kg·cm-2) 233 3.40 0.61 6.00 1.04 30.68
蛋壳颜色L* 值ESCL 235 78.11 65.11 86.29 2.86 3.67
蛋壳颜色a*值ESCA 234 -3.04 -8.44 -0.53 1.52 -50.17
蛋壳颜色b*值ESCB 234 4.81 1.37 13.63 1.66 34.58
蛋白高度 AH (mm) 235 6.36 1.32 20.80 3.33 9.85
哈氏单位HU 235 74.84 38.22 95.47 10.70 14.29
蛋黄颜色EYC 235 7.37 3.00 13.00 1.22 16.52
蛋黄重 EYW (g) 232 24.14 11.70 37.30 3.70 15.33
蛋黄比例 EYP (%) 232 34.77 17.06 57.91 5.52 15.87

Table 2

Genetic parameter estimation of egg quality traits"

蛋重
EW
蛋形指数
ESI
蛋壳厚
EST
蛋壳强度
ESS
蛋壳颜色L*值
ESCL
蛋壳颜色a*值
ESCA
蛋壳颜色b*值
ESCB
蛋白高度
AH
哈氏单位
HU
蛋黄颜色
EYC
蛋黄重
EYW
蛋黄比例
EYP
蛋重
EW
0.21±
0.16
- - - - - - 0.91±
0.37*
- - - -
蛋形指数
ESI
- 0.29±
0.17
- - - - - - - -0.98±
1.03*
- -
蛋壳厚
EST
- - 0.41±
0.17
- - -0.86±
0.25**
0.96±
0.37**
- - - - -
蛋壳强度
ESS
- - 0.41±
0.06***
0.01±
0.10
- - - - - - - -
蛋黄颜色L*值
ESCL
- - - - 0.37±
0.18
- - - - - - -
蛋黄颜色a*值
ESCA
- -0.16±
0.07*
-0.15±
0.07**
- 0.25±
0.07***
0.70±
0.20
-0.64±
0.28*
- - - - -
蛋黄颜色b*值
ESCB
- - 0.18±
0.07**
0.18±
0.06*
-0.31±
0.06***
-0.31±
0.06***
0.16±
0.14
- - - - -
蛋白高度
AH
0.04±
0.07*
- - 0.20±
0.06**
- -0.09±
0.07*
- 0.24±
0.18
- - - -
哈氏单位
HU
-0.18±
0.07***
- - 0.22±
0.06**
- -0.12±
0.07*
- - 0.08±
0.14
- -
蛋黄颜色
EYC
-0.10±
0.07*
0.07±
0.06*
- - - - - - 0.18±
0.06**
0.07±
0.14
- -
蛋黄重
EYW
0.24±
0.06***
- - - - - - - - - 0.01±
0.12
-
蛋黄比例
EYP
-0.26±
0.06***
- - - - - - - - - 0.87±
0.02***
0.08±
0.12

Table 3

Distribution of after quality control and independent SNP markers by chromosome"

染色体
Chromosome
SNPs数量
No. of SNPs
独立SNPs数量
No. of independent SNPs
染色体
Chromosome
SNPs数量
No. of SNPs
独立SNPs数量
No. of independent SNPs
1 9911 1523 16 1132 172
2 7488 1250 17 30 9
3 6116 988 18 1420 230
4 4026 644 19 989 149
5 4252 706 20 1546 251
6 2311 435 21 1382 242
7 2120 335 22 1072 177
8 2479 402 23 278 63
9 2163 407 24 687 122
10 1242 202 25 974 186
11 2177 369 26 134 48
12 1028 152 27 819 189
13 2066 377 28 766 173
14 1607 307 29 506 80
15 1545 240 Z 440 119
总计Total 62706 10547

Fig. 1

Principal component analysis plot of population structure"

Table 4

Bonferroni-corrected 5% genome-wise significant SNPs"

性状
Trait
染色体
Chromosome
标记号
SNP ID
物理位置
Position (bp)
A1
A1
BETA值
BETA
P
P value
最近的基因
Nearest gene
蛋形指数ESI 20 chr20:11135563:G:C 11135563 C -0.05 1.48×10-6 within LRRC75A
蛋壳厚EST 13 chr13:5766560:A:G 5766560 A 0.02 1.36×10-6 6.86 kb D LOC106014427
Z chrZ:968819:C:T 968819 T -0.02 1.96×10-6 within TCF4
蛋黄颜EYC 2 chr2:38155965:G:A 38155965 A 1.05 1.97×10-6 within KCNH8
9 chr9:22490158:A:T 22490158 T -0.97 3.77×10-6 within LOC106018641
9 chr9:22623155:T:C 22623155 C -0.92 1.91×10-6 within IRS1
9 chr9:22623156:G:A 22623156 A -1.08 8.75×10-7 within IRS1

Table 5

SNPs significance at genome-wise level suggestive significant association"

性状
Trait
染色体
Chromosome
标记号
SNP ID
物理位置
Position (bp)
A1
A1
BETA值
BETA
P
P value
最近的基因
Nearest gene
蛋重EW 2 chr2:10782468:A:G 10782468 G 3.45 2.81×10-5 U 120.07 kb ADARB2
2 chr2:10790319:T:C 10790319 T 3.31 5.81×10-5 U 112.21 kb ADARB2
5 chr5:5547457:T:C 5547457 T 2.89 3.36×10-5 U 63.45 kb MIS18BP1
5 chr5:5547530:A:G 5547530 G 2.80 6.33×10-5 U 63.38 kb MIS18BP1
蛋形指数ESI 3 chr3:81386471:A:G 81386471 A -0.05 6.66×10-5 D 13.01 NT5E
5 chr5:7009743:G:A 7009743 G 0.06 2.77×10-5 within CDKL1
15 chr15:11227397:T:C 11227397 C 0.05 6.39×10-5 within AXIN1
15 chr15:11227409:G:A 11227409 A 0.05 7.59×10-5 within AXIN1
15 chr15:13294556:C:T 13294556 T 0.05 2.39×10-5 within UBN1
15 chr15:13395347:A:G 13395347 A 0.05 3.49×10-5 within LOC101799012
15 chr15:14536844:G:A 14536844 A 0.05 1.02×10-5 U 41.78 kb RBFOX1
16 chr16:2579629:A:T 2579629 T -0.04 5.07×10-5 within EP400
16 chr16:3098786:G:A 3098786 A -0.04 1.97×10-5 D 22.42 kb LOC110352440
25 chr25:6315960:T:C 6315960 C -0.06 5.29×10-5 D 26.17 kb LOC106020386
蛋壳厚度EST 2 chr2:22513511:C:A 22513511 A 0.03 2.51×10-5 within ZNF804B
2 chr2:22582514:A:G 22582514 G 0.03 4.43×10-5 within ZNF804B
2 chr2:22582670:G:A 22582670 A 0.03 6.51×10-5 within ZNF804B
6 chr6:7192663:G:A 7192663 A 0.03 6.46×10-5 U 18.98 kb KCNK18
6 chr6:12756206:T:A 12756206 A 0.02 7.06×10-5 within SH3PXD2A
12 chr12:140915:T:A 140915 A -0.02 9.44×10-5 within THSD4
12 chr12:198263:G:A 198263 A -0.02 5.31×10-5 within THSD4
13 chr13:5721234:C:T 5721234 T 0.02 7.27×10-5 within LOC106014427
19 chr19:4873329:A:G 4873329 G 0.02 2.69×10-5 within LOC113845541
蛋壳强度ESS 5 chr5:33699890:A:T 33699890 T 0.66 6.76×10-5 within LOC113843881
蛋壳颜色L*值
ESCL
7 chr7:3182113:T:A 3182113 A -3.45 6.81×10-5 within CTR9
7 chr7:3204268:G:A 3204268 A -3.31 6.08×10-5 U 0.65 kb EIF4G2
7 chr7:3204312:A:G 3204312 G -3.34 6.05×10-5 U 0.60 kb EIF4G2
7 chr7:3223217:A:G 3223217 G -3.55 1.05×10-5 U 14.01 kb LOC113844171
7 chr7:3223320:T:A 3223320 A -3.37 9.92×10-6 U 13.91 kb LOC113844171
14 chr14:9802965:A:G 9802965 G 2.04 5.95×10-5 within CLINT1
蛋壳颜色a*值
ESCA
1 chr1:160744676:G:C 160744676 G -1.09 9.13×10-5 D 3.53 kb PHF5A
1 chr1:174907611:C:T 174907611 T -0.89 5.86×10-5 U 19.87 kb GPR85
4 chr4:6332903:C:G 6332903 G -0.93 5.91×10-5 U 6.34 kb MANBA
8 chr8:10668874:C:A 10668874 A -0.97 8.83×10-5 D 3.43 kb LOC113844346
蛋壳颜色 b*值
ESCB
1 chr1:59043295:C:T 59043295 T -1.54 7.39×10-5 U 142.06 kb ARHGEF7
1 chr1:59706095:T:C 59706095 C 1.03 6.95×10-5 D 3.76 kb COL4A2
3 chr3:16497369:T:C 16497369 C -1.19 2.36×10-5 U 13.30 kb VSX1
4 chr4:7424076:C:G 7424076 G 1.83 6.35×10-5 within RAP1GDS1
8 chr8:33254427:C:T 33254427 T 1.20 3.93×10-5 within SLC30A7
蛋白高度AU 2 chr2:102420094:T:G 102420094 G -0.89 5.83×10-5 U 14.46 kb RBBP8
4 chr4:5482597:A:C 5482597 C 1.49 4.59×10-5 D 21.57 kb LOC106017184
4 chr4:71726051:A:G 71726051 G 0.90 2.81×10-5 within LOC106017926
7 chr7:7414460:C:T 7414460 T 0.80 3.39×10-5 D 1.45 kb LOC106019248
20 chr20:6093764:T:C 6093764 T 1.30 4.41×10-5 U 5.58 kb SGSM2
20 chr20:10720431:A:G 10720431 G 1.01 3.37×10-5 U 15.28 kb RTN4RL1
哈氏单位HU 1 chr1:111329343:T:C 111329343 C 12.09 8.38×10-5 within TAGLN3
4 chr4:75257160:A:C 75257160 A -8.15 3.42×10-5 U 91.88 kb LOC110353528
7 chr7:7414460:C:T 7414460 T 6.42 5.32×10-5 D 1.45 kb LOC106019248
20 chr20:6093764:T:C 6093764 T 10.22 8.41×10-5 U 5.58 kb SGSM2
20 chr20:10720431:A:G 10720431 G 8.18 4.19×10-5 U 15.28 kb RTN4RL1
蛋黄颜色EYC 1 chr1:196541696:G:T 196541696 T 0.75 5.41×10-5 within CAMK1D
2 chr2:2433073:A:G 2433073 G 0.94 2.65×10-5 within GJC2
2 chr2:37584936:A:G 37584936 G 1.01 1.99×10-5 D 60.71 kb SATB1
2 chr2:37585118:C:T 37585118 T 0.77 6.42×10-5 D 60.53 kb SATB1
2 chr2:57679783:T:C 57679783 C 0.71 6.82×10-5 within GLI3
2 chr2:57679906:A:G 57679906 G 0.70 9.04×10-5 within GLI3
2 chr2:115153719:T:C 115153719 C -0.97 5.50×10-5 within ZNF521
2 chr2:115178457:C:T 115178457 T -1.10 5.57×10-5 within ZNF521
3 chr3:51410494:C:T 51410494 T -0.80 5.15×10-5 within RMND1
3 chr3:51410551:A:G 51410551 G -0.80 5.15×10-5 within RMND1
6 chr6:6402767:G:A 6402767 A -0.85 8.86×10-5 within CACUL1
7 chr7:10854039:A:G 10854039 G -1.28 6.98×10-5 within MAP2
9 chr9:22162962:T:G 22162962 G -1.08 4.62×10-5 within NYAP2
9 chr9:22163003:A:G 22163003 G -1.07 5.51×10-5 within NYAP2
9 chr9:22163123:T:C 22163123 C -1.07 5.51×10-5 within NYAP2
9 chr9:22490118:C:T 22490118 C -0.96 6.18×10-6 within LOC106018641
9 chr9:22490249:A:G 22490249 A -0.83 2.13×10-5 within LOC106018641
9 chr9:22628656:T:C 22628656 C -0.97 5.97×10-5 within IRS1
9 chr9:22636905:C:T 22636905 T -1.04 4.55×10-5 within IRS1
9 chr9:22798030:T:C 22798030 C -0.92 1.94×10-5 within COL4A3
9 chr9:22841648:T:C 22841648 C -0.95 6.18×10-5 within COL4A3
9 chr9:23005131:A:G 23005131 G -1.04 7.05×10-5 within DAW1
14 chr14:1139032:G:A 1139032 A -0.90 2.55×10-5 within ZIC4
24 chr24:3527498:A:G 3527498 A 0.74 7.73×10-5 within EPB41
蛋黄重EYW 2 chr2:2865193:A:G 2865193 A -2.66 6.56×10-5 U 2.17 kb SEC22C
9 chr9:11219039:A:G 11219039 G 2.15 9.42×10-5 within TP63
9 chr9:11360616:G:A 11360616 A 2.27 4.28×10-5 within TP63
9 chr9:11360684:A:G 11360684 G 2.27 4.43×10-5 within TP63
蛋黄比例EYP 2 chr2:129285222:C:T 129285222 T -6.95 6.53×10-5 within RMDN1
5 chr5:8855150:G:A 8855150 A 5.41 6.83×10-5 D 19.17 kb LOC110352963
6 chr6:708965:T:C 708965 C 6.13 2.71×10-5 within DPYSL4

Fig. 2

Manhattan plot of genome-wide study association study for egg shape index The x axis represents the genomic position of SNP, and the y axis represents -log10-tansformed P value of genome-wide association study. Each dot represents one SNP. The red line represents the Bonferroni-corrected 5% genome-wise significant threshold line at -log10 (4.74×10-6). The black dotted line indicates the genome-wise suggestive association threshold line at -log10 (9.48×10-5). The same as below"

Fig. 3

Manhattan plot of genome-wide study association study for eggshell thickness SNPs"

Fig. 4

Manhattan plot of genome-wide study association study for yolk color"

[1] LIU Z, SUN C J, YAN Y Y, LI G Q, SHI F Y, WU G Q, LIU A Q, YANG N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Scientific Reports, 2018, 8: 10832. doi:10.1038/s41598-018-29162-7.
doi: 10.1038/s41598-018-29162-7 pmid: 30018363
[2] GAO G, GAO D, ZHAO X, XU S, ZHANG K, WU R, YIN C, LI J, XIE Y, HU S, WANG Q. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Front Genet, 2021, 12: 602583. doi:10.3389/fgene.2021.602583.
doi: 10.3389/fgene.2021.602583
[3] LIU H, ZHOU Z, HU J, GUO Z, XU Y, LI Y, WANG L, FAN W, LIANG S, LIU D, ZHANG Y, XIE M, TANG J, HUANG W, ZHANG Q, HOU S. Genetic variations for egg internal quality of ducks revealed by genome-wide association study. Animal Genetics, 2021, 52(4): 536-541. doi:10.1111/age.13063.
doi: 10.1111/age.13063
[4] LIU W, LI D, LIU J, CHEN S, QU L, ZHENG J, XU G, YANG N. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS ONE, 2011, 6(12): e28600. doi:10.1371/journal.pone.0028600.
doi: 10.1371/journal.pone.0028600
[5] WOLC A, ARANGO J, JANKOWSKI T, DUNN I, SETTAR P, FULTON J E, O'SULLIVAN N P, PREISINGER R, FERNANDO R L, GARRICK D J, DEKKERS J C. Genome-wide association study for egg production and quality in layer chickens. Journal of Animal Breeding and Genetics, 2014, 131(3): 173-182. doi:10.1111/jbg.12086.
doi: 10.1111/jbg.12086 pmid: 24628796
[6] ZHANG G X, FAN Q C, WANG J Y, ZHANG T, XUE Q, SHI H Q. Genome-wide association study on reproductive traits in Jinghai Yellow Chicken. Animal Reproduction Science, 2015, 163: 30-34. doi:10.1016/j.anireprosci.2015.09.011.
doi: 10.1016/j.anireprosci.2015.09.011 pmid: 26498507
[7] SUN C, QU L, YI G, YUAN J, DUAN Z, SHEN M, QU L, XU G, WANG K, YANG N. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics, 2015, 16: 565. doi:10.1186/s12864-015-1795-7.
doi: 10.1186/s12864-015-1795-7
[8] LIAO R, ZHANG X, CHEN Q, WANG Z, WANG Q, YANG C, PAN Y. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim Genet, 2016, 47(5): 588-596. doi:10.1111/age.12456.
doi: 10.1111/age.12456 pmid: 27166871
[9] QU L, SHEN M, GUO J, WANG X, DOU T, HU Y, LI Y, MA M, WANG K, LIU H. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study. Archives Animal Breeding, 2019, 62(1): 113-123. doi:10.5194/aab-62-113-2019.
doi: 10.5194/aab-62-113-2019 pmid: 31807621
[10] 王珍珍. 不同蛋鸭品种产蛋性能的比较分析及绍兴鸭产蛋性能的全基因组关联分析[D]. 金华: 浙江师范大学, 2020.
WANG Z Z. Analysis on egg quality traits of four laying duck breeds and genome-wide association study of laying performance in Shaoxing duck[D]. Jinhua: Zhejiang Normal University, 2020. (in Chinese)
[11] 孙艳发, 李焰, 林如龙, 陈红萍, 吴琼, 李建磊, 陈羽, 林泽. 龙岩山麻鸭产蛋量和蛋重性状的遗传参数估计. 中国畜牧杂志, 2020, 56(10): 51-55. doi:10.19556/j.0258-7033.20191022-03.
doi: 10.19556/j.0258-7033.20191022-03
SUN Y F, LI Y, LIN R L, CHEN H P, WU Q, LI J L, CHEN Y, LIN Z. Estimation of genetic parameters for egg production and weight traits in Longyan Shan-ma duck. Chinese Journal of Animal Science, 2020, 56(10): 51-55. doi:10.19556/j.0258-7033.20191022-03. (in Chinese)
doi: 10.19556/j.0258-7033.20191022-03
[12] ROWAN B A, SEYMOUR D K, CHAE E, LUNDBERG D S, WEIGEL D. Methods for genotyping-by-sequencing. Methods in Molecular Biology (Clifton, N J), 2017, 1492: 221-242. doi:10.1007/978-1-4939-6442-0_16.
doi: 10.1007/978-1-4939-6442-0_16
[13] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760. doi:10.1093/bioinformatics/btp324.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[14] HUANG Y H, LI Y R, BURT D W, CHEN H L, ZHANG Y, QIAN W B, KIM H, GAN S Q, ZHAO Y Q, LI J W, YI K, FENG H P, ZHU P Y, LI B, LIU Q Y, FAIRLEY S, MAGOR K E, DU Z L, HU X X, GOODMAN L, TAFER H, VIGNAL A, LEE T, KIM K W, SHENG Z Y, AN Y, SEARLE S, HERRERO J, GROENEN M A M, CROOIJMANS R P M A, FARAUT T, CAI Q L, WEBSTER R G, ALDRIDGE J R, WARREN W C, BARTSCHAT S, KEHR S, MARZ M, STADLER P F, SMITH J, KRAUS R H S, ZHAO Y F, REN L M, FEI J, MORISSON M, KAISER P, GRIFFIN D K, RAO M, PITEL F, WANG J, LI N. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013, 45(7): 776-783. doi:10.1038/ng.2657.
doi: 10.1038/ng.2657 pmid: 23749191
[15] LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R. 1000 GENOME PROJECT DATA PROCESSING SUBGROUP. The sequence alignment/map format and SAMtools. Microbiology Spectrum, 2009, 25(16): 2078-2079. doi:10.1093/bioinformatics/btp352.
doi: 10.1093/bioinformatics/btp352
[16] PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, DE BAKKER P I, DALY M J, SHAM P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Biological Psychiatry, 2007, 81(3): 559-575. doi:10.1086/519795.
doi: 10.1086/519795
[17] 孙艳发. 基于全基因组关联研究技术筛选鸡产肉和肉品质性状相关候选基因[D]. 扬州: 扬州大学, 2013.
SUN Y F. Filtration of candidate gene related to meat production and quality traits based on genome-wide association study technique in chickens[D]. Yangzhou: Yangzhou University, 2013. (in Chinese)
[18] DALGAARD P. R Development Core Team (2010): R: a language and environment for statistical computing. 2010.
[19] NICODEMUS K K, LIU W, CHASE G A, TSAI YY, FALLIN M D. Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms. BMC Genetics, 2005, 6(Supplement 1):S78. doi: 10.1186/1471-2156-6-S1-S78.
doi: 10.1186/1471-2156-6-S1-S78
[20] PRICE A L, PATTERSON N J, PLENGE R M, WEINBLATT M E, SHADICK N A, REICH D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38(8): 904-909. doi:10.1038/ng1847.
doi: 10.1038/ng1847 pmid: 16862161
[21] SUN Y, ZHAO G, LIU R, ZHENG M, HU Y, WU D, ZHANG L, LI P, WEN J. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics, 2013, 14: 458. doi:10.1186/1471-2164-14-458.
doi: 10.1186/1471-2164-14-458 pmid: 23834466
[22] ZHU F, CHENG S R, YANG Y Z, HAO J P, YANG F X, HOU Z C. Genome-wide association study of growth and feeding traits in Pekin ducks. Frontiers in Genetics, 2019, 10: 702. doi:10.3389/fgene.2019.00702.
doi: 10.3389/fgene.2019.00702 pmid: 31404312
[23] DENG M T, ZHU F, YANG Y Z, YANG F X, HAO J P, CHEN S R, HOU Z C. Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks. BMC Genomics, 2019, 20(1): 1. doi:10.1186/s12864-018-5379-1.
doi: 10.1186/s12864-018-5379-1
[24] DENG M T, ZHANG F, ZHU F, YANG Y Z, YANG F X, HAO J P, HOU Z C. Genome-wide association study reveals novel loci associated with fat-deposition and meat-quality traits in Pekin ducks. Animal Genetics, 2020, 51(6): 953-957. doi:10.1111/age.12995.
doi: 10.1111/age.12995
[25] LI G S, LIU W W, ZHANG F, ZHU F, YANG F X, HAO J P, HOU Z C. Genome-wide association study of bone quality and feed efficiency-related traits in Pekin ducks. Genomics, 2020, 112(6): 5021-5028. doi:10.1016/j.ygeno.2020.09.023.
doi: 10.1016/j.ygeno.2020.09.023
[26] ZHU F, CUI Q Q, YANG Y Z, HAO J P, YANG F X, HOU Z C. Genome-wide association study of the level of blood components in Pekin ducks. Genomics, 2020, 112(1): 379-387. doi:10.1016/j.ygeno.2019.02.017.
doi: S0888-7543(18)30637-2 pmid: 30818062
[27] LI G S, ZHU F, ZHANG F, YANG F X, HAO J P, HOU Z C. Genome-wide association study reveals novel loci associated with feeding behavior in Pekin ducks. BMC Genomics, 2021, 22(1): 334. doi:10.1186/s12864-021-07668-1.
doi: 10.1186/s12864-021-07668-1
[28] LIU D P, FAN W L, XU Y X, YU S M, LIU W J, GUO Z B, HUANG W, ZHOU Z K, HOU S S. Genome-wide association studies demonstrate that TASP1 contributes to increased muscle fiber diameter. Heredity, 2021, 126(6): 991-999. doi:10.1038/s41437-021-00425-w.
doi: 10.1038/s41437-021-00425-w pmid: 33767369
[29] WANG L C, RUAN Z T, WU Z W, YU Q L, CHEN F, ZHANG X F, ZHANG F M, LINHARDT R J, LIU Z G. Geometrical characteristics of eggs from 3 poultry species. Poultry Science, 2021, 100(3): 100965. doi:10.1016/j.psj.2020.12.062.
doi: 10.1016/j.psj.2020.12.062
[30] STODDARD M C, YONG E H, AKKAYNAK D, SHEARD C, TOBIAS J A, MAHADEVAN L. Avian egg shape: Form, function, and evolution. Science, 2017, 356(6344): 1249-1254. doi:10.1126/science.aaj1945.
doi: 10.1126/science.aaj1945 pmid: 28642430
[31] LIN R L, CHEN H P, ROUVIER R, MARIE-ETANCELIN C. Genetic parameters of body weight, egg production, and shell quality traits in the Shan Ma laying duck (Anas platyrhynchos). Poultry Science, 2016, 95(11): 2514-2519. doi:10.3382/ps/pew222.
doi: 10.3382/ps/pew222 pmid: 27520070
[32] DUMAN M, ŞEKEROĞLU A, YıLDıRıM A, ELEROĞLU H, CAMCı. Relation Between Egg Shape Index and Egg Quality Characteristics. Stuttgart: Verlag Eugen Ulmer, 2016. doi:10.1399/eps.2016.117.
doi: 10.1399/eps.2016.117
[33] RIZZI C. Yield performance, laying behaviour traits and egg quality of purebred and hybrid hens reared under outdoor conditions. Animals, 2020, 10(4): E584. doi:10.3390/ani10040584.
doi: 10.3390/ani10040584
[34] WANG X, WANG H, ZHANG R, LI D, GAO M Q. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells. International Journal of Biological Sciences, 2020, 16(2): 251-263. doi:10.7150/ijbs.38214.
doi: 10.7150/ijbs.38214 pmid: 31929753
[35] CHEN J, LAN J, YE Z, DUAN S, HU Y, ZOU Y, ZHOU J. Long noncoding RNA LRRC75A-AS1 inhibits cell proliferation and migration in colorectal carcinoma. Experimental Biology and Medicine (Maywood, N J), 2019, 244(14): 1137-1143. doi:10.1177/1535370219874339.
doi: 10.1177/1535370219874339
[36] LI S J, WU D, JIA H Y, ZHANG Z R. Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death & Disease, 2020, 11: 643. doi:10.1038/s41419-020-02821-2.
doi: 10.1038/s41419-020-02821-2
[37] BERTONI A P S, BRACCO P A, DE CAMPOS R P, LUTZ B S, ASSIS-BRASIL B M, DE SOUZA MEYER E L, SAFFI J, BRAGANHOL E, FURLANETTO T W, WINK M R. Activity of ecto-5'-nucleotidase (NT5E/CD73) is increased in papillary thyroid carcinoma and its expression is associated with metastatic lymph nodes. Molecular and Cellular Endocrinology, 2019, 479: 54-60. doi:10.1016/j.mce.2018.08.013.
doi: S0303-7207(18)30262-4 pmid: 30184475
[38] SUN W, YAO L, JIANG B, SHAO H, ZHAO Y, WANG Q. A role for Cdkl1 in the development of gastric cancer. Acta Oncologica (Stockholm, Sweden), 2012, 51(6): 790-796. doi:10.3109/0284186x.2012.665611.
doi: 10.3109/0284186x.2012.665611
[39] LIU H, WANG L, GUO Z, XU Q, FAN W, XU Y, HU J, ZHANG Y, TANG J, XIE M, ZHOU Z, HOU S. Genome-wide association and selective sweep analyses reveal genetic loci for FCR of egg production traits in ducks. Genetics, Selection, Evolution, 2021, 53(1): 98. doi:10.1186/s12711-021-00684-5.
doi: 10.1186/s12711-021-00684-5
[40] 蒋晶晶. 三种家禽蛋壳厚度整齐性及蛋壳形状指标的研究[D]. 杭州: 浙江农林大学, 2020.
JIANG J J. The uniformity of eggshell thickness and eggshell shape indicators of three poultry[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese)
[41] ZHANG Y N, DENG Y Z, JIN Y Y, WANG S, HUANG X B, LI K C, XIA W G, RUAN D, WANG S L, CHEN W, ZHENG C T. Age-related changes in eggshell physical properties, ultrastructure, calcium metabolism-related serum indices, and gene expression in eggshell gland during eggshell formation in commercial laying ducks. Poultry Science, 2022, 101(2): 101573. doi:10.1016/j.psj.2021.101573.
doi: 10.1016/j.psj.2021.101573
[42] ZHANG F, YIN Z T, ZHANG J F, ZHU F, HINCKE M, YANG N, HOU Z C. Integrating transcriptome, proteome and QTL data to discover functionally important genes for duck eggshell and albumen formation. Genomics, 2020, 112(5): 3687-3695. doi:10.1016/j.ygeno.2020.04.015.
doi: S0888-7543(20)30003-3 pmid: 32334113
[43] FORREST M P, HILL M J, QUANTOCK A J, MARTIN-RENDON E, BLAKE D J. The emerging roles of TCF4 in disease and development. Trends in Molecular Medicine, 2014, 20(6): 322-331. doi:10.1016/j.molmed.2014.01.010.
doi: 10.1016/j.molmed.2014.01.010
[44] ISMAIL A B, NAJI M ' S, NEBIH İ, TUNCEL G, OZBAKIR B, TEMEL S G, TULAY P, MOCAN G, ERGOREN M C. The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. Zygote (Cambridge, England), 2022, 30(4): 536-542. doi:10.1017/s0967199422000028.
doi: 10.1017/s0967199422000028
[45] CHUNG J, WANG X L, MARUYAMA T, MA Y Y, ZHANG X L, MEZ J, SHERVA R, TAKEYAMA H, LUNETTA K L, FARRER L A, JUN G R. Genome-wide association study of Alzheimer's disease endophenotypes at prediagnosis stages. Alzheimer's & Dementia, 2018, 14(5): 623-633. doi:10.1016/j.jalz.2017.11.006.
doi: 10.1016/j.jalz.2017.11.006
[46] IMBRICI P, NEMATIAN-ARDESTANI E, HASAN S, PESSIA M, TUCKER S J, D’ADAMO M C. Altered functional properties of a missense variant in the TRESK K^+ channel (KCNK18) associated with migraine and intellectual disability. Pflügers Archiv - European Journal of Physiology, 2020, 472(7): 923-930. doi:10.1007/s00424-020-02382-5.
doi: 10.1007/s00424-020-02382-5
[47] CEJUDO-MARTIN P, YUEN A, VLAHOVICH N, LOCK P, COURTNEIDGE S A, DÍAZ B. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5. PLoS ONE, 2014, 9(9): e107674. doi:10.1371/journal.pone.0107674.
doi: 10.1371/journal.pone.0107674
[48] ELBITAR S, RENARD M, ARNAUD P, HANNA N, JACOB M P, GUO D C, TSUTSUI K, GROSS M S, KESSLER K, TOSOLINI L, DATTILO V, DUPONT S, JONQUET J, LANGEOIS M, BENARROCH L, AUBART M, GHALEB Y, ABOU KHALIL Y, VARRET M, EL KHOURY P, HO-TIN-NOÉ B, ALEMBIK Y, GAERTNER S, ISIDOR B, GOUYA L, MILLERON O, SEKIGUCHI K, MILEWICZ D, DE BACKER J, LE GOFF C, MICHEL J B, JONDEAU G, SAKAI L Y, BOILEAU C, ABIFADEL M. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genetics in Medicine, 2021, 23(1): 111-122. doi:10.1038/s41436-020-00947-4.
doi: 10.1038/s41436-020-00947-4
[49] KARUNAJEEWA H, HUGHES R J, MCDONALD M W, SHENSTONE F S. A review of factors influencing pigmentation of egg yolks. World's Poultry Science Journal, 1984, 40(1): 52-65. doi:10.1079/WPS19840006.
doi: 10.1079/WPS19840006
[50] COPPS K D, WHITE M F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012, 55(10): 2565-2582. doi:10.1007/s00125-012-2644-8.
doi: 10.1007/s00125-012-2644-8 pmid: 22869320
[51] SCHNEIDER A, ZHI X, MOREIRA F, LUCIA T, MONDADORI R G, MASTERNAK M M. Primordial follicle activation in the ovary of Ames dwarf mice. Journal of Ovarian Research, 2014, 7: 120. doi:10.1186/s13048-014-0120-4.
doi: 10.1186/s13048-014-0120-4 pmid: 25543533
[52] THANGAVELU M, GODLA U R, PAUL S F D, MADDALY R. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G and CAPN10 genes in the pathogenesis of polycystic ovary syndrome. Journal of Genetics, 2017, 96(1): 87-96. doi:10.1007/s12041-017-0749-z.
doi: 10.1007/s12041-017-0749-z pmid: 28360393
[53] KUTTAPITIYA A, ASSI L, LAING K, HING C, MITCHELL P, WHITLEY G, HARRISON A, HOWE F A, EJINDU V, HERON C, SOFAT N. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Annals of the Rheumatic Diseases, 2017, 76(10): 1764-1773. doi:10.1136/annrheumdis-2017-211396.
doi: 10.1136/annrheumdis-2017-211396 pmid: 28705915
[54] BRÉGEON M, TOMAS D, BERNAY B, ZATYLNY-GAUDIN C, GEORGEAULT S, LABAS V, RÉHAULT-GODBERT S, GUYOT N. Multifaceted roles of the egg perivitelline layer in avian reproduction: Functional insights from the proteomes of chicken egg inner and outer sublayers. Journal of Proteomics, 2022, 258: 104489. doi:10.1016/j.jprot.2022.104489.
doi: 10.1016/j.jprot.2022.104489
[55] LESKO S L, ROUHANA L. Dynein assembly factor with WD repeat domains 1 (DAW1) is required for the function of motile cilia in the planarian Schmidtea mediterranea. Development, Growth & Differentiation, 2020, 62(6): 423-437. doi:10.1111/dgd.12669.
doi: 10.1111/dgd.12669
[56] ELLINGHAUS E, ELLINGHAUS D, KRUSCHE P, GREINER A, SCHREIBER C, NIKOLAUS S, GIEGER C, STRAUCH K, LIEB W, ROSENSTIEL P, FRINGS N, FIEBIG A, SCHREIBER S, FRANKE A. Genome-wide association analysis for chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci. Scientific Reports, 2017, 7: 45652. doi:10.1038/srep45652.
doi: 10.1038/srep45652 pmid: 28374850
[57] SPENCER C C, SU Z, DONNELLY P, MARCHINI J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genetics, 2009, 5(5): e1000477. doi:10.1371/journal.pgen.1000477.
doi: 10.1371/journal.pgen.1000477
[1] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[2] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[3] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[4] ZHU Lei,ZHANG HaiLiang,CHEN ShaoKan,AN Tao,LUO HanPeng,LIU Lin,HUANG XiXia,WANG YaChun. Impacts of Somatic Cell Count in Early Lactation on Production Performance over the Whole Lactation and Its Genetic Parameters in Holsteins Cattle [J]. Scientia Agricultura Sinica, 2022, 55(2): 403-414.
[5] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
[6] ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers [J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
[7] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[8] XiaoShuai HAO,MengMeng FU,ZaiDong LIU,JianBo HE,YanPing WANG,HaiXiang REN,DeLiang WANG,XingYong YANG,YanXi CHENG,WeiGuang DU,JunYi GAI. Genome-Wide QTL-Allele Dissection of 100-Seed Weight in the Northeast China Soybean Germplasm Population [J]. Scientia Agricultura Sinica, 2020, 53(9): 1717-1729.
[9] ZHOU QingYuan, WANG Qian, YE Sang, CUI MinSheng, LEI Wei, GAO HuanHuan, ZHAO YuFeng, XU XinFu, TANG ZhangLin, LI JiaNa, CUI Cui. Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination [J]. Scientia Agricultura Sinica, 2019, 52(3): 399-413.
[10] ZHANG JianBo, YUAN Chao, YUE YaoJing, GUO Jian, NIU ChunE, WANG XiJun, WANG LiJuan, Lü HuiQin, YANG BoHui. Comparison and Analysis of Genetic Parameters Estimation of Early Growth Traits of Alpine Merino Sheep by Different Animal Models [J]. Scientia Agricultura Sinica, 2018, 51(6): 1202-1212.
[11] LI XueWu, LIU Yan, WANG RuiJun, WANG ZhiYing, NA Qing, LI HongWei, WANG ZhenYu, XU BingBing,SU Rui, ZHANG YanJun, LIU ZhiHong, LI JinQuan . Genetic Parameter Estimation of Cashmere Yield and Body Weight at Different Staple Types of Inner Mongolian Cashmere Goats [J]. Scientia Agricultura Sinica, 2018, 51(12): 2410-2417.
[12] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[13] WEI DaYong, TAN ChuanDong, CUI YiXin, WU DaoMing, LI JiaNa, MEI JiaQin, QIANWei. Genome-Wide Association Study of the Fertility Restorer Loci for pol CMS in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2017, 50(5): 802-810.
[14] WANG Xiao, ZHANG Qin, YU Ying. Genome-Wide Association Study on Mastitis Resistance Based on Somatic Cell Scores in Chinese Holstein Cows [J]. Scientia Agricultura Sinica, 2017, 50(4): 755-763.
[15] WANG MengQi, NI Wei, ZHANG HuiMin, YANG ZhangPing, WANG XiPu, JIANG YanSen, MAO YongJiang. Association Between SNPs in the CDS Regions of CXCR1 Gene and the Clinical Mastitis and Lifetime for Chinese Holstein [J]. Scientia Agricultura Sinica, 2017, 50(12): 2359-2370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!