Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2597-2608.doi: 10.3864/j.issn.0578-1752.2023.13.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Smad7-Mediated TGF-β Signaling Pathway on Proliferation of Sheep Granulosa Cells

GUO ZeYuan(), DU ZhangSheng, ZHANG YaQi, CHEN ChunLu, MA XiaoYan, CHENG Ying, WANG Kai, LÜ LiHua()   

  1. College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2022-05-06 Accepted:2023-02-13 Online:2023-07-01 Published:2023-07-06
  • Contact: Lü LiHua

Abstract:

【Background】Follicle development is a complex regulatory process, in which the proliferation and differentiation of ovine follicular granulosa cells (Granulosa Cells, GCs) will directly affect the development of follicles. TGF-β signaling pathway plays an important role in sheep ovarian development and follicle growth, and Smad7 also plays an important role as a key inhibitor of TGF-β signaling pathway. 【Objective】In this study, the effect of Smad7-mediated TGF-β signaling pathway on the proliferation and apoptosis of ovine follicular GCs was explored to provide a basis for further research on the regulatory role of Smad7 in the process of follicular GCs proliferation and apoptosis. 【Method】20 non-pregnant Jinzhong Duhu hybrid ewes aged 4-6 months were selected. After slaughtering, bilateral ovaries were collected, and GCs were isolated and cultured in vitro. And then, FSHR cell and expression localization of Smad7 cells was identified by immunofluorescence, the cell proliferation was measured by CCK8 method, and the growth curve was drawn. After the cells were passaged, different concentrations of Smad7 agonist Asiaticoside AS (0, 100, 200, 400, 600 ng·mL-1) were added exogenously, and the optimal concentration of AS was selected to treat the second generation GCs. The expression levels of key genes as well as apoptosis and cycle-related genes in the TGF-β signaling pathway were detected using qRT-PCR and Western blotting. Three siSmad7s were synthesized and transfected into follicular GCs, and the one with the best interference effect was selected. The expression levels of key genes in the TGF-β signaling pathway, apoptosis and cycle-related genes were detected by qRT-PCR and Western blotting. 【Result】Smad7 was expressed in ovine follicular GCs; 200 ng·mL-1 AS could significantly up-regulate the expression of Smad7 in GCs (P<0.01), siSmad7-1 could effectively transfected ovine follicle GCs (P<0.01); Up-regulation of Smad7 could significantly increase the expressions of Smad4, TFDP-1 and EP300 in the TGF-β signaling pathway (P<0.05), extremely significantly increase the expression of SP1 in the TGF-β signaling pathway (P<0.01), and significantly increase the expression of apoptosis-related gene Caspase8 (P<0.05), extremely significantly increased the expressions of apoptosis-related genes Caspase3 and Bim (P<0.01), significantly increased the expressions of cell cycle-related genes P21 and P27 (P<0.05), extremely significantly increased the expression of cell cycle-related gene CCND2 (P<0.01), while the expression of CCND1 was significantly decreased (P<0.05); Smad7 siRNA significantly decreased the expressions of Smad4, TFDP-1 and EP300 in the TGF-β signaling pathway (P<0.05), extremely significantly decreased the expression of SP1 in the TGF-β signaling pathway (P<0.01), and significantly decreased the apoptosis-related gene Caspase8 (P<0.05), extremely significantly decreased the expressions of apoptosis-related genes Caspase3 and Bim (P<0.01), extremely significantly decreased the expressions of cell cycle-related genes P21, P27 and CCND2 (P<0.01), extremely significantly increased the expression of CCND1 (P<0.01); CCK8 analysis demonstrated into that when Smad7 was up-regulated, the proliferation rate of GCs was significantly down-regulated at 24 h and 48 h (P<0.01). Smad7 siRNA significantly increased the proliferation rate of GCs at 24 h and 72 h (P<0.05), which also extremely significantly increased the proliferation rate of GCs (P<0.01).【Conclusion】In summary, it was suggested that Smad7 mediated TGF-β signaling pathway to inhibit the proliferation of ovine follicular GCs and to promote cell apoptosis.

Key words: asiaticoside (AS), siRNA, Smad7, TGF-β signaling pathway, sheep, granulosa cells

Table 1

Primer for Quantitative Real-time PCR"

基因 Gene 引物序列 Primer sequence (5´→3´) 长度 Product size (bp)
Smad7 F:CCCATCACCTTAGCCGACTC 101
Smad7 R:CACAGCATCTGGACAGTCAGT 101
β-actin F:GCAAAGACCTCTACGCCAAC 90
β-actin R:GGGCAGTGATCTCTTTCTGC 90
TFDP1 F:GTGGTCGCGGGAAAACCA 175
TFDP1 R:GACAGCAACCAAGGACACCA 175
SP1 F:GCTACCATGAGCGACCAA 101
SP1 R:CTACCATTTCCATTGCCCCC 101
EP300 F:CCAGCCTCTTAAGATGGGAAT 110
EP300 R:TCGGAATCTGGAGACCAAGG 110
Smad4 F:GAGCAAGGTTGCACATAGGC 80
Smad4 R:GTCACTAAGGCACCTGACCC 80
CCND1 F:TGATCAGATGTGACCCGGACT 185
CCND1 R:CCCTCAAATGTTCACGTCGC 185
CCND2 F:AGACCTTCATCGCTCTGTGC 186
CCND2 R:TGAGGCAATCCACATCCGTG 186
P21 F:GCTTCTTGTACCAGGACCCAG 118
P21 R:CAGAGAGTTCGCTTCACCGAG 118
P27 F:ACCACCGTCAAACCTTACTCC 159
P27 R:TTCTCTGTAGGACCCCTCGT 159
Caspase3 F:CCCACTGCAGCAACATTAATCC 252
Caspase3 R:CGACAGGCCATGCCAGTATT 252
Caspase8 F:ACTGTGTGGAGCAGGTAACA 128
Caspase8 R:CCGGCTTAGGAACTTGAGGG 128
Bim F:TGAGGCAGTCTCAGGCTGTA 153
Bim R:GGAGGACCATTTGTGGGTGG 153

Fig. 1

Immunofluorescence identification of ovine GCs"

Fig. 2

Immunofluorescence localization of Smad7 in ovine GCs"

Fig. 3

Transfection of Smad7 agonist and siRNA in ovine follicular GCs *means significant difference, P<0.05, and ** means extremely significant difference, P<0.01. The same as below"

Fig. 4

Effects of 200 ng·mL-1 AS on the expression of Smad7 protein in ovine follicular GCs"

Fig. 5

Effects of siSmad7-1 treatment on the expression of Smad7 protein in ovine follicular GCs"

Fig. 6

The effect of Smad7 on the expression levels of related genes in TGF-β signaling pathway"

Fig. 7

Effects of Smad7 up-regulation and down-regulation on the proliferation rate of ovine follicular GCs"

Fig. 8

Effects of Smad7 up-regulation and down-regulation on cell cycle-related genes of ovine follicular GCs"

Fig. 9

Effects of Smad7 on apoptosis-related genes of ovine follicular GCs"

[1]
吴玉萍, 赵茴茴, 周玉霞, 汪丽萍. 颗粒细胞在卵母细胞发育成熟中的作用. 国际生殖健康/计划生育杂志, 2017, 36(6): 503-506.
WU Y P, ZHAO H H, ZHOU Y X, WANG L P. The role of granulosa cells in oocyte maturation. Journal of International Reproductive Health/Family Planning, 2017, 36(6): 503-506. (in Chinese)
[2]
卢翠玲, 杨巍, 胡召元, 刘以训. 颗粒细胞的增殖分化及其在卵泡发育中的作用. 科学通报, 2005, (21): 2341-2347.A.
LU C L, YANG W, HU Z Y, LIU Y X. Proliferation and differentiation of granulosa cells and their role in follicular development. Chinese Science Bulletin, 2005, (21): 2341-2347.A. (in Chinese)
[3]
MATSUDA F, INOUE N, MANABE N, OHKURA S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. The Journal of Reproduction and Development, 2012, 58(1): 44-50.

pmid: 22450284
[4]
TIWARI M, TRIPATHI A, CHAUBE S K. Presence of encircling granulosa cells protects against oxidative stress-induced apoptosis in rat eggs cultured in vitro. Apoptosis, 2017, 22(1): 98-107.

doi: 10.1007/s10495-016-1324-4
[5]
GONG X Y, MCGEE E A. Smad3 is required for normal follicular follicle-stimulating hormone responsiveness in the mouse. Biology of Reproduction, 2009, 81(4): 730-738.

doi: 10.1095/biolreprod.108.070086 pmid: 19535790
[6]
MIDDLEBROOK B S, ELDIN K, LI X H, SHIVASANKARAN S, PANGAS S A. Smad1-Smad 5 ovarian conditional knockout mice develop a disease profile similar to the juvenile form of human granulosa cell tumors. Endocrinology, 2009, 150(12): 5208-5217.

doi: 10.1210/en.2009-0644
[7]
WANG C, GU S, CAO H H, LI Z T, XIANG Z, HU K B, HAN X D. miR-877-3p targets Smad7 and is associated with myofibroblast differentiation and bleomycin-induced lung fibrosis. Scientific Reports, 2016, 6(1): 1-11.

doi: 10.1038/s41598-016-0001-8
[8]
LÖNN P, MORÉN A, RAJA E, DAHL M, MOUSTAKAS A. Regulating the stability of TGFβ receptors and Smads. Cell Research, 2009, 19(1): 21-35.

doi: 10.1038/cr.2008.308
[9]
TANG B, ZHU B, LIANG Y Y, BI L K, HU Z C, CHEN B, ZHANG K, ZHU J Y. Asiaticoside suppresses collagen expression and TGF-β/smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts. Archives of Dermatological Research, 2011, 303(8): 563-572.

doi: 10.1007/s00403-010-1114-8 pmid: 21240513
[10]
QUEZADA M, WANG J K, HOANG V, MCGEE E A. Smad7 is a transforming growth factor-beta-inducible mediator ofapoptosis in granulosa cells. Fertility and Sterility, 2012, 97(6): 1452-1459.e6.

doi: 10.1016/j.fertnstert.2012.03.024
[11]
GAO Y, WEN H X, WANG C, LI Q L. SMAD7 antagonizes key TGFβ superfamily signaling in mouse granulosa cells in vitro. REPRODUCTION, 2013, 146(1): 1-11.

doi: 10.1530/REP-13-0093
[12]
KUO S W, KE F C, CHANG G D, LEE M T, HWANG J J. Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFβ1) in the regulation of ovarian angiogenesis. Journal of Cellular Physiology, 2011, 226(6): 1608-1619.

doi: 10.1002/jcp.22491
[13]
MASSAGUÉ J. TGFβ signalling in context. Nature Reviews Molecular Cell Biology, 2012, 13(10): 616-630.

doi: 10.1038/nrm3434 pmid: 22992590
[14]
LIU J Y, YAO W, YAO Y, DU X, ZHOU J L, MA B Q, LIU H L, LI Q F, PAN Z X. miR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Letters, 2014, 588(23): 4497-4503.

doi: 10.1016/j.febslet.2014.10.021
[15]
李碧筠, 黄思艺, 王钰锟, 王磊, 何莉娜, 唐雪, 徐德军, 赵中权. SMAD7对山羊卵泡颗粒细胞增殖、凋亡的影响. 畜牧兽医学报, 2022, 53(8): 2548-2557.
LI B J, HUANG S Y, WANG Y K, WANG L, HE L N, TANG X, XU D J, ZHAO Z Q. Effects of SMAD7 on proliferation and apoptosis of goat follicular granulosa cells. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2548-2557. (in Chinese)
[16]
TIAN X, HALFHILL A N, DIAZ F J. Localization of phosphorylated SMAD proteins in granulosa cells, oocytes and oviduct of female mice. Gene Expression Patterns, 2010, 10(2/3): 105-112.

doi: 10.1016/j.gep.2010.02.003
[17]
马继伟, 王宏天, 刘浩飞, 董磊鹏, 丁元, 白继琼, 张翥, 东莉洁. 积雪草对转染TGF-β1基因的大鼠肾小球系膜细胞Smad 2/3、Smad 7和胶原蛋白Ⅳ表达的影响. 中国应用生理学杂志, 2018, 34(2): 122-125, 149.
MA J W, WANG H T, LIU H F, DONG L P, DING Y, BAI J Q, ZHANG Z, DONG L J. Effects of centellaasiatica granule on the expression of Smad 2/3, Smad 7 and collagen Ⅳ in the mesangial cells stably expressed TGF-β1. Chinese Journal of Applied Physiology, 2018, 34(2): 122-125, 149. (in Chinese)
[18]
LEE J, JUNG E, KIM Y, PARK J, PARK J, HONG S, KIM J, HYUN C, KIM Y S, PARK D. Asiaticoside induces human collagen I synthesis through TGFbeta receptor I kinase (TbetaRI kinase)- independent Smad signaling. Planta Medica, 2006, 72(4): 324-328.

doi: 10.1055/s-2005-916227
[19]
QI S H, XIE J, PAN S, XU Y, LI T, TANG J, LIU X, SHU B, LIU P. Effects of asiaticoside on the expression of Smad protein by normal skin fibroblasts and hypertrophic scar fibroblasts. Clinical and Experimental Dermatology, 2008, 33(2): 171-175.

doi: 10.1111/j.1365-2230.2007.02636.x pmid: 18201262
[20]
ROSAIRO D, KUYZNIEREWICZ I, FINDLAY J, DRUMMOND A. Transforming growth factor-beta: its role in ovarian follicle development. Reproduction (Cambridge, England), 2008, 136(6): 799-809.

doi: 10.1530/REP-08-0310
[21]
周敏, 冯强, 黄丽波, 杨在宾, 杨维仁, 姜淑贞. 转化生长因子β1/Smads信号传导通路在哺乳动物卵巢发育中的调控作用及其作用机制. 动物营养学报, 2017, 29(7): 2283-2288.
ZHOU M, FENG Q, HUANG L B, YANG Z B, YANG W R, JIANG S Z. Regulation and mechanism of transforming growth factor-β1/ smads signaling pathway on development of ovaries in mammalian. Chinese Journal of Animal Nutrition, 2017, 29(7): 2283-2288. (in Chinese)
[22]
LIU S J, DE BOECK M, VAN DAM H, TEN DIJKE P. Regulation of the TGF-β pathway by deubiquitinases in cancer. The International Journal of Biochemistry & Cell Biology, 2016, 76: 135-145.

doi: 10.1016/j.biocel.2016.05.001
[23]
YAO G D, YIN M M, LIAN J, TIAN H, LIU L, LI X, SUN F. microRNA-224 is involved in transforming growth factor-β-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Molecular Endocrinology, 2010, 24(3): 540-551.

doi: 10.1210/me.2009-0432
[24]
LIU J Y, DU X, ZHOU J L, PAN Z X, LIU H L, LI Q F. microRNA-26b functions as a proapoptotic factor in Porcine follicular granulosa cells by targeting sma-and mad-related protein 4. Biology of Reproduction, 2014, 91(6): 146, 1-12.
[25]
DU X, ZHANG L F, LI X Y, PAN Z X, LIU H L, LI Q F. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis. Cell Death & Disease, 2016, 7(11): e2476.
[26]
ZHOU J L, LIU J Y, PAN Z X, DU X, LI X Y, MA B Q, YAO W, LI Q F, LIU H L. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor. Molecular and Cellular Endocrinology, 2015, 409: 103-112.

doi: 10.1016/j.mce.2015.03.012 pmid: 25817543
[27]
RUAN Y H, ZHANG Z G, ZHANG X R, LIU C, GUO M Y. The expressions of TGF-beta1 and Smad 2 mRNA on diseased glomeruli and their significance in the development of glomerulosclerosis. Chinese Journal of Pathology, 2002, 31(4): 314-317.
[28]
PANGAS S A, LI X H, ROBERTSON E J, MATZUK M M. Premature luteinization and cumulus cell defects in ovarian-specific Smad4 knockout mice. Molecular Endocrinology, 2006, 20(6): 1406-1422.

doi: 10.1210/me.2005-0462 pmid: 16513794
[29]
KENT L N, LEONE G. The broken cycle: E2F dysfunction in cancer. Nature Reviews Cancer, 2019, 19(6): 326-338.

doi: 10.1038/s41568-019-0143-7
[30]
HUANG J H, WANG Y N, LIU J L, CHU M, WANG Y D. TFDP3 as E2F unique partner, has crucial roles in cancer cells and testis. Frontiers in Oncology, 2021, 11: 742462.

doi: 10.3389/fonc.2021.742462
[31]
PHILIPSEN S, SUSKE G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Research, 1999, 27(15): 2991-3000.

doi: 10.1093/nar/27.15.2991 pmid: 10454592
[32]
姚一龙, 李隐侠, 安外尔·热合曼, 张俊, 孟春花, 王慧利, 钱勇, 曹少先. 湖羊Sp1基因CDS区克隆及其对颗粒细胞增殖和凋亡的影响. 畜牧兽医学报, 2017, 48(11): 2098-2106.
YAO Y L, LI Y X, ANWAIER ·REHEMAN, ZHANG J, MENG C H, WANG H L, QIAN Y, CAO S X. Cloning of Sp1Gene CDS region of hu sheep and its effect on proliferation and apoptosis of granulosa cells. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(11): 2098-2106. (in Chinese)
[33]
张才, 朱仲玲, 阎昭. EP300/CBP在肿瘤中的研究现状和进展. 天津医科大学学报, 2020, 26(5): 502-505.
ZHANG C, ZHU Z L, YAN Z. Research status and progress of EP300/CBP in tumor. Journal of Tianjin Medical University, 2020, 26(5): 502-505. (in Chinese)
[34]
MIYAZAWA K, MIYAZONO K. Regulation of TGF-β family signaling by inhibitory smads. Cold Spring Harbor Perspectives in Biology, 2017, 9(3): a022095.

doi: 10.1101/cshperspect.a022095
[35]
YAN X H, LIAO H W, CHENG M Z, SHI X J, LIN X, FENG X H, CHEN Y G. Smad7 protein interacts with receptor-regulated smads (R-smads) to inhibit transforming growth factor-β (TGF-β)/ smad signaling. Journal of Biological Chemistry, 2016, 291(1): 382-392.

doi: 10.1074/jbc.M115.694281
[36]
张亮. miR-21-5p靶向Smad7调控猪卵巢颗粒细胞凋亡的分子机制研究[D]. 合肥: 安徽农业大学, 2019.
ZHANG L. The molecular mechanism of miR-21-5p regulates apoptosis of Porcine granulosa cells by targeting Smad7[D]. Hefei: Anhui Agricultural University, 2019. (in Chinese)
[37]
ABBAS T, DUTTA A. p21 in cancer: intricate networks and multiple activities. Nature Reviews Cancer, 2009, 9(6): 400-414.

doi: 10.1038/nrc2657
[38]
ABBASTABAR M, KHEYROLLAH M, AZIZIAN K, BAGHERLOU N, TEHRANI S S, MANIATI M, KARIMIAN A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: a double-edged sword protein. DNA Repair, 2018, 69: 63-72.

doi: S1568-7864(18)30144-7 pmid: 30075372
[39]
MJELLE R, HEGRE S A, AAS P A, SLUPPHAUG G, DRABLØS F, SÆTROM P, KROKAN H E. Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair, 2015, 30: 53-67.

doi: 10.1016/j.dnarep.2015.03.007 pmid: 25881042
[40]
MANABE N, GOTO Y, MATSUDA-MINEHATA F, INOUE N, MAEDA A, SAKAMAKI K, MIYANO T. Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia. The Journal of Reproduction and Development, 2004, 50(5): 493-514.

doi: 10.1262/jrd.50.493
[41]
ZHANG J B, XU Y X, LIU H L, PAN Z X. microRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reproductive Biology and Endocrinology, 2019, 17(1): 9.

doi: 10.1186/s12958-018-0450-y pmid: 30630485
[42]
CHANG H Y, YANG X. Proteases for cell suicide: functions and regulation of caspases. Microbiology and Molecular Biology Reviews: MMBR, 2000, 64(4): 821-846.

doi: 10.1128/MMBR.64.4.821-846.2000
[1] ZHANG YingXin, YANG Min, BAI XueBing, CHEN Chang, WU RuiZhi, YANG Ping, CHEN QiuSheng. Morphological Characteristics of Telocytes at Sheep Acupoints and Its Relationship with Surrounding Structures [J]. Scientia Agricultura Sinica, 2023, 56(7): 1417-1428.
[2] ZHAO WeiHong, HAN WenXiong, YANG Bo, MENG WeiKang, CHAI HaiLiang, MA YiMin, ZHANG ZhanSheng, WANG LiFeng, WANG Yan, WANG MingYuan, ZHANG Shan, DING YuLin, WANG JinLing, JIRINTAI Sulijid, WANG FengLong, ZHAO Li, LIU YongHong. Isolation and Genotyping of Mycobacterium avium subsp. paratuberculosis from Sheep in Inner Mongolia [J]. Scientia Agricultura Sinica, 2023, 56(6): 1204-1214.
[3] AYIMUGULI Abudureyimu, ZHANG Chen, CAI Yong, QIN Sheng, LUO WenXue, ZHAXIYINGPAI. The Micro-Structure of Tibetan Sheep Lung and Its HIF-1α and AQP1 Expression Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2202-2211.
[4] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[5] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[6] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[7] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[8] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[9] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[10] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[11] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[12] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[13] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[14] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[15] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!