Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (11): 2202-2211.doi: 10.3864/j.issn.0578-1752.2023.11.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

The Micro-Structure of Tibetan Sheep Lung and Its HIF-1α and AQP1 Expression Characteristics

AYIMUGULI Abudureyimu1(), ZHANG Chen1, CAI Yong2, QIN Sheng1, LUO WenXue3, ZHAXIYINGPAI1   

  1. 1 College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030
    2 Department of Experimental Teaching, Northwest Minzu University, Lanzhou 730030
    3 Tianzhu Tibetan Autonomous County Animal Husbandry Technology Station, Wuwei 733200, Gansu
  • Received:2021-12-22 Accepted:2023-03-23 Online:2023-06-01 Published:2023-06-19

Abstract:

【Background】HIF-1α is one of the key factors for cells to make adaptive response to hypoxia stress. It mainly maintains the balance of oxygen supply by regulating gene transcription. Aquaporins (AQPs) are hydrophobic transmembrane transporters regulating water homeostasis. Among them, AQP-1 mainly regulates the water transport among alveoli, pulmonary interstitium and capillaries, so as to maintain the fluid balance in the lung. The plateau environment is characterized by low oxygen, extremely cold, strong wind and radiation, so there are relatively few species which could adapt and survive. As the unique sheep species adapt to high altitude and high cold climate, Tibetan sheep has formed a special morphological structure and physiological functions adapted to the plateau environment. As the main executive organ of respiration, lung is very sensitive to hypoxia. 【Objective】 This study aimed to explore the structural characteristics of Tibetan sheep lung and the expression characteristics of HIF-1α and AQP1, so as to reveal the related roles of HIF-1α and AQP1 in Tibetan sheep high altitude adaption. 【Method】 The histochemical HE, PAS and Masson staining, immuno-histochemical SP and real-time fluorescence quantitative were used.【Result】The tunica thickness of lung in Tibetan sheep was 40.28 μm, which showed no significant difference with that of Small Tail Han sheep, but the elastic fiber proportion was significantly higher than that of Small Tail Han sheep (P<0.05); the number of goblet cells in bronchiolar epithelium in Tibetan sheep was significantly more than that in Small Tail Han sheep (P<0.05), but there was no significant difference in superior branches; some goblet cells were still detected in the epithelium of bronchioli terminales of Tibetan sheep; the thickness of smooth muscle of bronchioli terminales of Tibetan sheep was significantly thicker than that of Small Tail Han sheep (P<0.05); the proportion of smooth muscle in the pulmonary arteriole (diameter less than 100 μm) in Tibetan sheep was significantly less than that of Small Tail Han sheep; the thickness of respiratory bronchiole smooth muscle and the number of capillaries in Tibetan sheep were significantly higher than those in Small Tail Han sheep. The HIF-1α protein was mainly expressed in bronchiolar epithelium, pulmonary micro-vascular endothelium and alveolar septum, and mainly detected in cytoplasm; both Tibetan sheep and Small Tail Han sheep, the expression of HIF-1α was significantly higher in high altitude than that of low altitude, and HIF-1α expression in low altitude Tibetan sheep was significantly stronger than that of Small Tail Han sheep living at low altitude. AQP1 protein was mainly expressed in alveolar epithelium, alveolar septum, pulmonary microvascular endothelium, submucosal and smooth muscle of bronchioles, mainly located on cell membrane; the expression of AQP1 in lung of Tibetan sheep living at high altitude was significantly stronger than that of Tibetan sheep from low altitude, and also stronger than that of Small Tail Han sheep either altitude (P<0.05), but there was no significant difference between Small Tail Han sheep living at high altitude and low (P>0.05).【Conclusion】All those results indicated that the lung capsule of Tibetan sheep contained more elastic fibers and less microvascular smooth muscle than that of Small Tail Han sheep, with more number of goblet cells and smooth muscle in respiratory bronchioles. The expression of HIF-1α and AQP1 in Tibetan Sheep lung were significantly stronger than that of Small Tail Han sheep, and their expression increased with living altitude increasing.

Key words: Tibetan sheep, HIF-1α, AQP1, Lung

Table 1

Primer sequence"

引物名称
Primer name
序列号
Accession No.
序列
Sequence (5′-3′)
扩增长度
Amplicon size (bp)
退火温度
Tm (℃)
绵羊 β-Actin
Sheep β-Actin
NM_001009784.3 F: GCAGATGTGGATCAGCAAGC
R:TCTCGTTTTCTGCGCAAGTT
133 60
绵羊HIF-1α
Sheep HIF-1α
XM_027971915.2 F: ATGTCTCCATTACCTGCCTCTGA
R:CTGTTAGGCTCAGGTGAACTTTGT
197 56
绵羊AQP
Sheep AQP
NM_001009194.1 F: ATCGTCGCCACTGTCATCCT
R:TATCGCCAGCAGGTGTCCAA
240 58

Fig. 1

The micro-structure of the Tibetan sheep lung PM: Tunica; LA: Pulmonary arterioles; TB: Terminal bronchioles; HC: Hyaline cartilage; MG: Mixed glands;AD: Alveolar duct; AS: Alveolar sac; PA: Alveolar. A: Pulmonary capsule (Gomori×100); B: Elastic fibers (Gomori×100); C: Collagenous fibers (Masson×200); D: Bronchiole (H.E×40); E: Bronchioli terminals (H.E×100); F: Bronchial mucosa and glands (PAS×200); G: Goblet cells (PAS×400); H: Mixed Glands (HE×400); I: Respiratory bronchiole (Masson×200). J: Alveolar duct; K: Alveolar sac and alveolar (H.E×400)"

Table 2

The thickness and elastic fiber ratio in lung tunica in the Tibetan sheep and Small Tail Han sheep"

浆膜厚度
Tunica thickness (μm)
弹性纤维厚度
Elastic fibers thickness (μm)
弹性纤维百分比
Thickness proportion (%)
藏绵羊Tibetan sheep 40.28±1.58ns 21.95±1.65* 54.49*
小尾寒羊Small Tail Han sheep 39.24±2.15 12.25±1.55 31.21

Table 3

Differences of respiratory parts of lung in the Tibetan sheep and Small Tail Han sheep"

Reb平滑肌厚度
Smooth muscle of Reb (μm)
单个肺泡面积
APA (μm2)
肺泡隔毛细血管数
Capillary number (mm2)
藏绵羊 Tibetan sheep 25.12±1.25* 1256±56ns 113±12*
小尾寒羊 Small Tail Han sheep 8.05±0.75 1368±42 65±9

Table 4

The ratio of smooth muscle layer to pulmonary arterioles in the Tibetan sheep and Small Tail Han sheep (%)"

肺微动脉直径 Pulmonary arteriole diameter (μm)
<50 50—100 101—200 201—400
藏绵羊 Tibetan sheep 28.14±3.14a 22.32±5.14a 20.12±1.99a 18.24±3.21a
小尾寒羊 Small Tail Han sheep 36.36±2.36b 34.25±2.14b 21.24±2.24a 18.66±4.56a

Table 5

The differences in goblet cell numbers and smooth muscle thickness in Bronchioli of the Tibetan sheep and Small Tail Han sheep"

杯状细胞数Goblet cell numbers (mm2) 平滑肌厚度Smooth muscle thickness (μm)
藏绵羊
Tibetan sheep
小尾寒羊
Small Tail Han sheep
藏绵羊
Tibetan sheep
小尾寒羊
Small Tail Han sheep
段支气管 Segmental bronchi 1854±98a 1759±65a 215.12±12.24a 204.26±14.35a
小支气管 Bronchium 1453±54a 1398±62a 175.14±4.13a 168.24±3.65a
细支气管 Bronchiole 541±24b 142±12c 45.34±2.55b 42.24±3.65b
终末细支气管 Bronchioli terminales 15±3d ND 36.14±1.25b 21.09±2.34c

Fig. 2

Expression of HIF-1α and AQP1 protein in lung of the Tibetan sheep and Small Tail Han sheep(×100) a: HIF-1α expression in the lung of Tibetan sheep in higher altitude; b: HIF-1α expression in the lung of Tibetan sheep in lower altitude; c: HIF-1α expression in the lung of Small Tail Han sheep in higher altitude; d: HIF-1α expression in the lung of Small Tail Han sheep in lower altitude; e: AQP1 expression in the lung of Tibetan sheep in higher altitude; f: AQP1 expression in the lung of Tibetan sheep in lower altitude; g: AQP1 expression in the lung of Small Tail Han sheep in higher altitude; h: AQP1 expression in the lung of Small Tail Han sheep in lower altitude"

Fig. 3

Expression of HIF-1α and AQP1 in lung of the Tibetan sheep and Small Tail Han sheep Different letters mean significant difference (P<0.05), and same letters mean no significant difference (P>0.05). TH: Tibetan sheep in higher altitude; TL: Tibetan sheep in lower altitude; SH: Small Tail Han sheep in higher altitude; SL: Small Tail Han sheep in lower altitude"

[1]
STORZ J F, SCOTT G R, CHEVIRON Z A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. The Journal of Experimental Biology, 2010, 213(Pt 24): 4125-4136.
[2]
何建文, 张伟, 刘秀, 李少斌, 王继卿, 胡江, 罗玉柱. 藏绵羊HMOX1基因表达及其多态性与低氧适应性的关联分析. 农业生物技术学报, 2019, 27(3): 441-448.
HE J W, ZHANG W, LIU X, LI S B, WANG J Q, HU J, LUO Y Z. HMOX1 gene expression and association between its polymorphism and hypoxia adaptation in Tibetan sheep (Ovis aries). Journal of Agricultural Biotechnology, 2019, 27(3): 441-448. (in Chinese)
[3]
李讨讨, 王霞, 马友记, 尹德恩, 张勇, 赵兴绪. 藏绵羊BOLL的分子特征及其在睾丸中的表达调控与功能分析. 中国农业科学, 2020, 53(20): 4297-4312.
LI T T, WANG X, MA Y J, YIN D E, ZHANG Y, ZHAO X X. Molecular characterization of Tibetan sheep BOLL and its expression regulation and functional analysis in testis. Scientia Agricultura Sinica, 2020, 53(20): 4297-4312. (in Chinese)
[4]
吴震洋, 唐晓惠, 付玉华, 王昇, 章程, 李京津, 余梅, 杜小勇. 藏绵羊不同毛色皮肤组织miRNA表达谱及靶基因分析. 中国农业科学, 2018, 51(2): 351-362.
WU Z Y, TANG X H, FU Y H, WANG S, ZHANG C, LI J J, YU M, DU X Y. Profiles of miRNAs and target gene analysis with white and black skin tissues of the Tibetan sheep. Scientia Agricultura Sinica, 2018, 51(2): 351-362. (in Chinese)
[5]
张晨, 刘斯汝, 蔡勇, 李囿蓉, 何灵芝, 蔡建亮, 罗文学, 阿依木古丽. 藏山羊与藏绵羊肺组织结构的对比研究. 动物学杂志, 2019, 54(5): 687-692.
ZHANG C, LIU S R, CAI Y, LI Y R, HE L Z, CAI J L, LUO W X, AYIMUGULI. Comparison of lung microstructure between Tibetan goat and sheep. Chinese Journal of Zoology, 2019, 54(5): 687-692. (in Chinese)
[6]
HOWELL K, PRESTON R J, MCLOUGHLIN P. Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. The Journal of Physiology, 2003, 547(Pt 1): 133-145.
[7]
XU Y R, WANG A L, LI Y Q. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Frontiers in Oncology, 2022, 12: 984525.
[8]
LI M Y, MI C L, WANG K S, WANG Z, ZUO H X, PIAO L X, XU G H, LI X Z, MA J, JIN X J. Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling. Chemico-Biological Interactions, 2017, 274: 58-67.
[9]
KIM J W, TCHERNYSHYOV I, SEMENZA G L, DANG C V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 2006, 3(3): 177-185.
[10]
ZENG M B, SHEN J K, LIU Y Y, LU L Y, DING K, FORTMANN S D, KHAN M, WANG J X, HACKETT S F, SEMENZA G L, CAMPOCHIARO P A. The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. Journal of Molecular Medicine, 2017, 95(4): 417-429.
[11]
ZHAO X R, LIU L D, LI R, WEI X, LUAN W Q, LIU P S, ZHAO J. Hypoxia-inducible factor 1-α (HIF-1α) induces apoptosis of human uterosacral ligament fibroblasts through the death receptor and mitochondrial pathways. Medical Science Monitor, 2018, 24: 8722-8733.
[12]
GENA P, PELLEGRINI-CALACE M, BIASCO A, SVELTO M, CALAMITA G. Aquaporin membrane channels: biophysics, classification, functions, and possible biotechnological applications. Food Biophysics, 2011, 6(2): 241-249.
[13]
CONNOLLY D L, SHANAHAN C M, WEISSBERG P L. The aquaporins. A family of water channel proteins. The International Journal of Biochemistry & Cell Biology, 1998, 30(2): 169-172.
[14]
ZHANG J P, LI S W, LIU J, LI L X, DENG F, BAIKELI B, LI L R, MA X Y, LIU G Q. Higher expression levels of aquaporin (AQP)1 and AQP5 in the lungs of arid-desert living Lepus yarkandensis. Journal of Animal Physiology and Animal Nutrition, 2020, 104(4): 1186-1195.
[15]
YADAV E, YADAV N, HUS A, YADAV J S. Aquaporins in lung health and disease: emerging roles, regulation, and clinical implications. Respiratory Medicine, 2020, 174: 106193.
[16]
WANG C, YAN M Y, JIANG H, WANG Q, GUAN X, CHEN J W, WANG C B. Protective effects of puerarin on acute lung and cerebrum injury induced by hypobaric hypoxia via the regulation of aquaporin (AQP) via NF-κB signaling pathway. International Immunopharmacology, 2016, 40: 300-309.
[17]
ABREU-RODRÍGUEZ I, SILVA R S, MARTINS A P, SOVERAL G, TOLEDO-ARAL J J, LÓPEZ-BARNEO J, ECHEVARRÍA M. Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1α. PLoS ONE, 2011, 6(12): e28385.
[18]
刘芳, 乌仁塔娜, 马兰, 杨应忠, 格日力. 藏羚羊低氧诱导因子1α基因的克隆与组织表达. 生理学报, 2011, 63(6): 565-573.
LIU F, WURENTANA, MA L, YANG Y Z, GERILI. Genetic cloning and expression of hypoxia inducible factor 1 alpha in high altitude hypoxic adaptation species Tibetan antelope (Pantholops hodgsonii). Acta Physiologica Sinica, 2011, 63(6): 565-573. (in Chinese)
[19]
DOLT K S, MISHRA M K, KARAR J, BAIG M A, AHMED Z, QADAR PASHA M A. cDNA cloning, gene organization and variant specific expression of HIF-1α in high altitude yak (Bos grunniens). Gene, 2007, 386(1/2): 73-80.
[20]
何俊峰, 余四九, 崔燕. 不同年龄高原牦牛肺脏的组织结构特征. 畜牧兽医学报, 2009, 40(5): 748-755.
HE J F, YU S J, CUI Y. Characteristics of lung structure in different age plateau yak. Chinese Journal of Animal and Veterinary Sciences, 2009, 40(5): 748-755. (in Chinese)
[21]
周大鹏, 刘建国, 王芳, 贾宁. 藏獒肺组织对高原低氧环境的适应特性. 甘肃农业大学学报, 2009, 44(4): 25-28.
ZHOU D P, LIU J G, WANG F, JIA N. Pulmonary tissue adaptation to high altitude of Tibetan Mastiff. Journal of Gansu Agricultural University, 2009, 44(4): 25-28. (in Chinese)
[22]
王晓君, 魏登邦, 魏莲, 齐新章, 朱世海, 饶鑫峰. 高原鼢鼠和高原鼠兔肺细叶的结构特征. 动物学报, 2008, 54(3): 531-539.
WANG X J, WEI D B, WEI L, QI X Z, ZHU S H, RAO X F. Characteristics of pulmonary acinus structure in the plateau zokor Myospalax baileyi and plateau pika Ochotona curzniae. Acta Zoologica Sinica, 2008, 54(3): 531-539. (in Chinese)
[23]
陈秋生, 冯霞, 姜生成. 牦牛肺脏高原适应性的结构研究. 中国农业科学, 2006, 39(10): 2107-2113.
CHEN Q S, FENG X, JIANG S C. Structural study on plateau adaptability of yak lung. Scientia Agricultura Sinica, 2006, 39(10): 2107-2113. (in Chinese)
[24]
张晶晶, CHEN Jun-hao, 赵美平, 武垣伶, 张聪聪, 应磊, 陈锡文, 王万铁. 内质网应激在大鼠低氧高二氧化碳性肺动脉高压中的作用. 中国应用生理学杂志, 2018, 34(4): 327-333, 387.
ZHANG J J, CHEN J H, ZHAO M P, WU Y L, ZHANG C C, YING L, CHEN X W, WANG W T. The role of endoplasmic reticulum stress in pulmonary hypertension in rat induced by chronic hypoxia and hypercapnia. Chinese Journal of Applied Physiology, 2018, 34(4): 327-333, 387. (in Chinese)
[25]
李双, 邹小艳, 付林, 刘忠浩, 白祥慧, 都玉蓉, 郭松长. 高原鼠兔和昆明白小鼠肺组织结构比较. 兽类学报, 2020, 40(2): 162-169.
LI S, ZOU X Y, FU L, LIU Z H, BAI X H, DU Y R, GUO S C. Comparative on pulmonary histochemical characteristics between plateau pika and Kunming mouse. Acta Theriologica Sinica, 2020, 40(2): 162-169. (in Chinese)
[26]
LIU J, WANG W, WANG L, CHEN S H, TIAN B, HUANG K W, CORRIGAN C J, YING S, WANG W, WANG C. IL-33 initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells. EBioMedicine, 2018, 33: 196-210.
[27]
ZHOU F, DU J, WANG J J. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells. Molecular and Cellular Biochemistry, 2017, 428(1): 171-178.
[28]
LUO Y T, TENG X, ZHANG L L, CHEN J N, LIU Z, CHEN X H, ZHAO S, YANG S, FENG J, YAN X Y. CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nature Communications, 2019, 10(1): 1-17.
[29]
ZHAO T B, NING H X, ZHU S S, SUN P, XU S X, CHANG Z J, ZHAO X Q. Cloning of hypoxia-inducible factor 1α cDNA from a high hypoxia tolerant mammal—plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 2004, 316(2): 565-572.
[30]
杨敏, 史兆国, 韩吉龙, 岳耀敬, 郭婷婷, 郭健, 刘建斌, 孙晓萍, 王朝风, 杨博辉. HIF-1α基因G901A多态性与高海拔低氧适应的相关性. 华北农学报, 2013, 28(6): 111-114.
YANG M, SHI Z G, HAN J L, YUE Y J, GUO T T, GUO J, LIU J B, SUN X P, WANG C F, YANG B H. Association between the G901A polymorphism of HIF-1α gene and adaptation to high-altitude hypoxia. Acta Agriculturae Boreali-Sinica, 2013, 28(6): 111-114. (in Chinese)
[31]
FU Y, ZHU J J, ZHANG Y L, LIU Z W, SU H, KONG J. Vitamin D regulates the expressions of AQP-1 and AQP-4 in mice kidneys. BioMed Research International, 2019, 2019: 3027036.
[32]
VASSILIOU A G, MANITSOPOULOS N, KARDARA M, MANIATIS N A, ORFANOS S E, KOTANIDOU A. Differential expression of aquaporins in experimental models of acute lung injury. In Vivo (Athens, Greece), 2017, 31(5): 885-894.
[33]
赖宁, 钟典, 云昕, 金颖康. AQP1促进肺动脉平滑肌细胞的增殖与迁移. 中国生物化学与分子生物学报, 2017, 33(7): 697-705.
LAI N, ZHONG D, YUN X, JIN Y K. The aquaporin 1 protein promotes migration and proliferation of pulmonary arterial smooth muscle cells. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(7): 697-705. (in Chinese)
[34]
李璐, 彭旭东, 林静, 赵桂秋. H2O2对人晶状体上皮细胞AQP1和AQP5表达影响及其机制. 青岛大学学报(医学版), 2022, 58(2): 173-177.
LI L, PENG X D, LIN J, ZHAO G Q. Effects of h2o2 on expression of aqp1 and aqp5 in human lens epithelial cells and the underlying mechanisms. Journal of Qingdao University (Medical Sciences), 2022, 58(2): 173-177. (in Chinese)
[35]
KESKINIDOU C, LOTSIOS N S, VASSILIOU A G, DIMOPOULOU I, KOTANIDOU A, ORFANOS S E. The interplay between aquaporin-1 and the hypoxia-inducible factor 1α in a lipopolysaccharide- induced lung injury model in human pulmonary microvascular endothelial cells. International Journal of Molecular Sciences, 2022, 23(18): 10588.
[36]
LUO S J, LI Y L, LI S W, JIANG R J, DENG F, LIU G Q, ZHANG J P. Expression regulation of water reabsorption genes and transcription factors in the kidneys of Lepus yarkandensis. Frontiers in Physiology, 2022, 13: 856427.
[1] LI TaoTao,WANG Xia,MA YouJi,YIN DeEn,ZHANG Yong,ZHAO XingXu. Molecular Characterization of Tibetan Sheep BOLL and Its Expression Regulation and Functional Analysis in Testis [J]. Scientia Agricultura Sinica, 2020, 53(20): 4297-4312.
[2] WU ZhenYang, TANG XiaoHui, FU YuHua, WANG Sheng, ZHANG Cheng, LI JingJin, YU Mei, DU XiaoYong. Profiles of miRNAs and Target Gene Analysis with White and Black Skin Tissues of the Tibetan Sheep [J]. Scientia Agricultura Sinica, 2018, 51(2): 351-362.
[3] CHENG Shu-Ru, LUO Yu-Zhu, HU Jiang, WANG Ji-Qing, LIU Xiu. Polymorphisms of the DQA1 Gene in Tibetan Sheep [J]. Scientia Agricultura Sinica, 2011, 44(10): 2146-2153.
[4] PENG Xin-yan,KONG Bao-hua,XIONG You-ling
. Protective Effects of Whey Protein Isolate (WPI) Peptides on Lung Fibroblasts Cell MRC-5 Caused by the Damage of H2O2
[J]. Scientia Agricultura Sinica, 2010, 43(14): 2982-2989 .
[5] QIAO Li-juan,WANG Li-xian,WANG Li-gang,YAN Hua,ZHANG Long-chao
. Diversification of Porcine Pulmonary Surfactant Protein A and Its Significance in Acute Lung Injury
[J]. Scientia Agricultura Sinica, 2010, 43(14): 3027-3035 .
[6] LIU Xiu,HU Jiang,LUO Yu-zhu. Polymorphisms of the Gene OLA-DQA2 Exon 2 in Tibetan Sheep
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2930-2936 .
[7] ,. Structural adaptability of yak lung [J]. Scientia Agricultura Sinica, 2006, 39(10): 2107-2113 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!