Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (7): 1417-1428.doi: 10.3864/j.issn.0578-1752.2023.07.017

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Morphological Characteristics of Telocytes at Sheep Acupoints and Its Relationship with Surrounding Structures

ZHANG YingXin(), YANG Min, BAI XueBing, CHEN Chang, WU RuiZhi, YANG Ping, CHEN QiuSheng()   

  1. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095
  • Received:2021-11-05 Accepted:2022-04-28 Online:2023-04-01 Published:2023-04-03

Abstract:

【Background】 Meridian theory is the cornerstone of Traditional Chinese Medicine (TCM), and acupoints are the key sites on the meridian, which are the implementation location of the acupuncture. However, there are different opinions on the structural basis and morphological composition of acupoints, which cannot be scientifically clarified. As a newly found type of interstitial cells, Telocytes (TCs) were suggested to be the potential essence cells of the meridian by morphological study recently, but the characteristics and distribution of TCs at acupoints need to be further elucidated. 【Objective】 This study aimed to analyze the structural differences between acupoints and non-acupoints, and to explore the morphological characteristics of TCs at acupoints. The structural relations between TCs and its surrounding components were also analyzed, so as to provide theoretical support for the study of the cellular mechanism of TCM acupuncture treatment. 【Method】 The skin tissues of Baihui (Du20), Quchi (LI11), Sanyinjiao (Sp6), Danzhong (Ren17), Chengjiang (Ren24), Erjian (EP4) and non-acupoints on the back and abdomen were collected from five adult healthy Hu sheep. TCs and Tps (telopodes) were stained by specific markers CD34 and Vimentin, the mast cells were labeled by TPS, and nerves were identified by PGP9.5. Extracellular vesicles were marked by TSG101. The structure and fine composition of skin acupoints and non-acupoints were analyzed by H.E and immunohistochemical techniques (IHC), and the morphological quantitative analysis of the data was carried out by using ImageJ and Image-Pro Plus statistical software. The distribution differences of TCs and its related structures at acupoints and non-acupoints were analyzed. On this basis, the morphological characteristics and stereoscopic structure of TCs were observed by transmission electron microscope (TEM), scanning electron microscope (SEM) and immunofluorescence (IF) double labeling technique, and the morphological relationship between TCs and these structures was further analyzed, thus determining the ultramorphology and material basis of acupoints. 【Result】 There were such structures as hair follicles, sebaceous glands, sweat glands and arrector pili muscle, as well as nerves, blood vessels, mast cells, collagen fiber bundles at the acupoints and non-acupoints. However, the number of nerves, blood vessels and mast cells distribution at acupoints was significantly more than that at non-acupoints (P<0.05). More importantly, TCs with slender tubular processes (telopodes, Tps) were distributed in the skins, and the distribution of TCs at the acupoints was significantly different from that of non-acupoints (P<0.05). TCs could be used as the integrator of acupoints stroma. There were extensive relationships between TCs themselves or TCs and surrounding morphological structures (including gap junctions and extracellular vesicles, etc.), which could develop a structural network system. At the ultramicro level, it was observed that the Tps was a typical beaded appearance, which was composed of alternating arrangement of the inflated part (podom, Pd) and the slender stenotic part (podomer, P). The well-developed mitochondria in the cytoplasm of podom, the cellular connection between Tps and Tps, and a large number of extracellular vesicles on or around TCs (significantly more than non-acupoints (P<0.05)) ensured the core role of TCs in the structure of acupoints. Moreover, the structural connection between TCs and epidermal derivatives also verified the relationship between acupoints and epidermal derivatives in the classic book Huangdi Neijing (The Yellow Emperor’s Canon of Internal Medicine) at the cellular level. 【Conclusion】 Structural compositions at the acupoints and non-acupoints were basically the same, while the number of TCs and Tps, nerves, blood vessels, mast cells, extracellular vesicles at acupoints was significantly more than that at non-acupoints; TCs and Tps had the functional structures of connecting and integrating various morphological components, which might be mediators or integrators of different systems at the acupoints. The cell connections among TCs, developed mitochondria and extracellular vesicles had the structural basis for cell communication and energy generation, which corresponds to the “Qi-Xue” in TCM.

Key words: acupoints, microstructure, telocytes, extracellular vesicles, sheep

Fig. 1

Schematic diagram of sampling sites for acupoints and non-acupoints of sheep skin"

Fig. 2

Comparison of the distribution of TCs at acupoints and non-acupoints in sheep skin Sg. sweat glands, Hf. hair follicle, Ap. arrector pili muscle, Seb. sebaceous gland, Lc. lymphatic vessel, Cb. Collagen fiber bundle, Bv. blood vessel. *P<0.05, **P<0.01. The same as below a-d. IHC staining: CD34 label TCs, a-c. acupoints, a. Erjian, b. Sanyinjiao, c. Chengjiang, d. non-acupoint. e-h. TCs around epidermal derivatives under TEM, e. Danzhong, f. Baihui, g. Erjian, h. non-acupoint, △. tissue micro-channe. i. IF staining at Eejian: anti-CD34 (red) and anti-vimentin (green) antibodies label TCs, the imaginary box represents the enlarged area. Arrows indicate TC and Tps. j. Comparison of TCs areas of acupoints and non-acupoints"

Fig. 3

Structural relationship between TCs and blood vessels a-b. H.E staining: a. Erjian, b. non-acupoint, arrows indicate blood vessels. c. IHC staining at Erjian: CD34 label TCs, arrows indicate TCs. d. IF staining at Quchi: anti-CD34 (red) and anti-vimentin (green) antibodies label TCs, arrows indicate TCs. e. TCs around blood vessels at Danzhong under TEM. f. Comparison of the number of blood vessels at acupoints and non-acupoints"

Fig. 4

Cytologial relationship between TCs and mast cells a-b. IHC staining: TPS labe mast cell, a. Sanyinjiao, b. non-acupoint, arrows indicate mast cell. c-d. TCs around mast cell at Baihui under TEM, M. mitochondria, arrows indicate caveolae. e. IF staining at Chengjiang: anti-TPS (red) and anti-Vimentin (green) antibodies label mast cells and TCs, arrows indicate TCs. f. Comparison of the number of mast cell at acupoints and non-acupoints"

Fig. 5

Morphlogical relationship between TCs and nerves a-b. IHC staining: PGP 9.5 label nerve, a. Danzhong, b. non-acupoint. c. IHC staining at Baihui: CD34 label TCs, Nb. nerve bundle. d. TCs inside and outside the nerve bundle at Quchi under TEM, Mf. Myelinated nerve, Umf. Unmyelinated nerve, Nm. Nerve membrane, e. IF staining at Erjian: anti-CD34 (red) and anti-PGP9.5 (green) antibodies label TCs and nerve. Arrows indicate TCs. f. Comparison of nerve area between acupoints and non-acupoints"

Fig. 6

Relationship between TCs and extracellular vesicles a-c. IF staining at Danzhong: anti- Vimentin (red) and anti- TSG101 (green) antibodies label TCs and extracellular vesicles, arrows indicate extracellular vesicles. d. Extracellular vesicles(Blue areas) around TCs at Danzhong under TEM, wave arrow indicates gap junction. e. Comparison of the number of extracellular vesicles at acupoints and non-acupoints"

Fig. 7

Structure of TCs under scanning electron microscope a-b. Baihui, c-d. non-acupoint, Tp. Telopodes, Pd. podom, P. podomer, arrows indicate extracellular vesicle"

[1]
朱兵. 论穴位与穴位特异性. 中国针灸, 2021, 41(9): 943-950. doi:10.13703/j.0255-2930.20210701-k0002.

doi: 10.13703/j.0255-2930.20210701-k0002
ZHU B. On the acupoint and its specificity. Chinese Acupuncture & Moxibustion, 2021, 41(9): 943-950. doi:10.13703/j.0255-2930.20210701-k0002. (in Chinese)

doi: 10.13703/j.0255-2930.20210701-k0002
[2]
LI F, HE T, XU Q, LIN L T, LI H, LIU Y, SHI G X, LIU C Z. What is the Acupoint? A preliminary review of Acupoints. Pain Medicine, 2015, 16(10): 1905-1915. doi:10.1111/pme.12761.

doi: 10.1111/pme.12761 pmid: 25975413
[3]
WEN J Y, CHEN X, YANG Y, LIU J X, LI E Y, LIU J Y, ZHOU Z W, WU W H, HE K. Acupuncture medical therapy and its underlying mechanisms: A systematic review. The American Journal of Chinese Medicine, 2021, 49(1): 1-23. doi:10.1142/S0192415X21500014.

doi: 10.1142/S0192415X21500014 pmid: 33371816
[4]
YANG M N, HAN J X. Review and analysis on the meridian research of China over the past sixty years. Chinese Journal of Integrative Medicine, 2015, 21(5): 394-400. doi:10.1007/s11655-015-2168-4.

doi: 10.1007/s11655-015-2168-4
[5]
GA M V, FREIRE M A. The interstitial cells of Cajal in pancreas. Journal of Cellular and Molecular Medicine, 2005, 9(2): 475.

pmid: 15963268
[6]
DÍAZ-FLORES L, GUTIÉRREZ R, SÁEZ F J, DÍAZ-FLORES JR L, MADRID J F. Telocytes in neuromuscular spindles. Journal of Cellular and Molecular Medicine, 2013, 17(4): 457-465. doi:10.1111/jcmm.12015.

doi: 10.1111/jcmm.12015
[7]
RUSU M C, MIRANCEA N, MĂNOIU V S, VÂLCU M, NICOLESCU M I, PĂDURARU D. Skin telocytes. Annals of Anatomy- Anatomischer Anzeiger, 2012, 194(4): 359-367. doi:10.1016/j.aanat.2011.11.007.

doi: 10.1016/j.aanat.2011.11.007
[8]
SHI Y H, WU R Z, ZHANG Y, BAI X B, TARIQUE I, LIANG C H, YANG P, CHEN Q S. Telocytes in different organs of vertebrates: potential essence cells of the meridian in Chinese traditional medicine. Microscopy and Microanalysis, 2020, 26(3): 575-588. doi:10.1017/s1431927620001518.

doi: 10.1017/S1431927620001518 pmid: 32390582
[9]
ULLAH S, YANG P, ZHANG L L, ZHANG Q, LIU Y, CHEN W, WAQAS Y, LE Y, CHEN B, CHEN Q S. Identification and characterization of telocytes in the uterus of the oviduct in the Chinese soft-shelled turtle, Pelodiscus sinensis: TEM evidence. Journal of Cellular and Molecular Medicine, 2014, 18(12): 2385-2392. doi:10.1111/jcmm.12392.

doi: 10.1111/jcmm.12392
[10]
YANG P, ZHU X D, WANG L L, AHMED N, HUANG Y F, CHEN H, ZHANG Q, ULLAH S, LIU T F, GUO D W, BROHI S A, CHEN Q S. Cellular evidence of telocytes as novel interstitial cells within the magnum of chicken oviduct. Cell Transplantation, 2017, 26(1): 135-143. doi:10.3727/096368916X692942.

doi: 10.3727/096368916X692942 pmid: 27590447
[11]
METZGER R, SCHUSTER T, TILL H, FRANKE F E, DIETZ H G. Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatric Surgery International, 2005, 21(3): 169-174. doi:10.1007/s00383-004-1314-4.

doi: 10.1007/s00383-004-1314-4 pmid: 15654610
[12]
MCCLOSKEY K D, HOLLYWOOD M A, THORNBURY K D, WARD S M, MCHALE N G. Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell and Tissue Research, 2002, 310(1): 77-84. doi:10.1007/s00441-002-0623-y.

doi: 10.1007/s00441-002-0623-y pmid: 12242486
[13]
CREŢOIU S M, CREŢOIU D, POPESCU L M. Human myometrium - The ultrastructural 3D network of telocytes. Journal of Cellular and Molecular Medicine, 2012, 16(11): 2844-2849. doi:10.1111/j.1582-4934.2012.01651.x.

doi: 10.1111/j.1582-4934.2012.01651.x pmid: 23009098
[14]
IBBA-MANNESCHI L, ROSA I, MANETTI M. Telocyte implications in human pathology: An overview. Seminars in Cell & Developmental Biology, 2016, 55: 62-69. doi:10.1016/j.semcdb.2016.01.022.

doi: 10.1016/j.semcdb.2016.01.022
[15]
ZHENG Y H, ZHANG M M, QIAN M J, WANG L Y, CISMASIU V B, BAI C X, POPESCU L M, WANG X D. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. Journal of Cellular and Molecular Medicine, 2013, 17(4): 567-577. doi:10.1111/jcmm.12052.

doi: 10.1111/jcmm.12052 pmid: 23621815
[16]
GHERGHICEANU M, POPESCU L M. Cardiac telocytes - Their junctions and functional implications. Cell and Tissue Research, 2012, 348(2): 265-279. doi:10.1007/s00441-012-1333-8.

doi: 10.1007/s00441-012-1333-8 pmid: 22350946
[17]
CRETOIU D, CRETOIU S M. Telocytes in the reproductive organs: current understanding and future challenges. Seminars in Cell & Developmental Biology, 2016, 55: 40-49. doi:10.1016/j.semcdb.2016.03.018.

doi: 10.1016/j.semcdb.2016.03.018
[18]
SCADDEN D T. The stem-cell niche as an entity of action. Nature, 2006, 441(7097): 1075-1079. doi:10.1038/nature04957.

doi: 10.1038/nature04957
[19]
LEIJNSE J E W, DE HEUS R, DE JAGER W, RODENBURG W, PEETERS L L H, FRANX A, EIJKELKAMP N. First trimester placental vascularization and angiogenetic factors are associated with adverse pregnancy outcome. Pregnancy Hypertension, 2018, 13: 87-94. doi:10.1016/j.preghy.2018.04.008.

doi: 10.1016/j.preghy.2018.04.008
[20]
HUSSEIN M M, MOKHTAR D M. The roles of telocytes in lung development and angiogenesis: An immunohistochemical, ultrastructural, scanning electron microscopy and morphometrical study. Developmental Biology, 2018, 443(2): 137-152. doi:10.1016/j.ydbio.2018.09.010.

doi: S0012-1606(18)30448-2 pmid: 30227119
[21]
陈秋生. 中医经络实质研究的新进展. 针刺研究, 2021, 46(6): 533-540. doi:10.13702/j.1000-0607.201045.

doi: 10.13702/j.1000-0607.201045
CHEN Q S. New progresses of studies on essence of meridian- collaterals of traditional Chinese medicine. Acupuncture Research, 2021, 46(6): 533-540. doi:10.13702/j.1000-0607.201045. (in Chinese)

doi: 10.13702/j.1000-0607.201045
[22]
BAI X B, WU R Z, ZHANG Y, LIANG C H, SHI Y H, ZHANG Y X, DING B T, TARIQUE I, YANG P, CHEN Q S. Tissue micro-channels formed by collagen fibers and their internal components: Cellular evidence of proposed meridian conduits in vertebrate skin. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 2020, 26(5): 1069-1075. doi:10.1017/S1431927620024381.

doi: 10.1017/S1431927620024381
[23]
范郁山, 贺彩, 周诗琪, 张传协. 从能量学角度探讨影响腧穴功能的因素. 中国针灸, 2021, 41(5): 521-524. doi:10.13703/j.0255-2930.20200416-0006.

doi: 10.13703/j.0255-2930.20200416-0006
FAN Y S, HE C, ZHOU S Q, ZHANG C X. Study on influence factors of acupoint function based on energetics. Chinese Acupuncture & Moxibustion, 2021, 41(5): 521-524. doi:10.13703/j.0255-2930.20200416-0006. (in Chinese)

doi: 10.13703/j.0255-2930.20200416-0006
[24]
黎波, 李忠正, 刘强. 经络流派学说研究进展. 山西中医, 2016, 32(6): 55-57. doi:10.3969/j.issn.1000-7156.2016.06.025.

doi: 10.3969/j.issn.1000-7156.2016.06.025
LI B, LI Z Z, LIU Q. Research progress of meridian schools. Journal of Shanxi University of Chinese Medicine, 2016, 32(6): 55-57. doi:10.3969/j.issn.1000-7156.2016.06.025. (in Chinese)

doi: 10.3969/j.issn.1000-7156.2016.06.025
[25]
佘琛, 徐东升, 崔晶晶, 王佳, 何伟, 王晓宇, 景向红, 白万柱. 腧穴结构研究的思考. 针刺研究, 2018, 43(5): 285-289. doi:10.13702/j.1000-0607.170911.

doi: 10.13702/j.1000-0607.170911
SHE C, XU D S, CUI J J, WANG J, HE W, WANG X Y, JING X H, BAI W Z. Our considerations about studies on structure of acupuncture points. Acupuncture Research, 2018, 43(5): 285-289. doi:10.13702/j.1000-0607.170911. (in Chinese)

doi: 10.13702/j.1000-0607.170911
[26]
余安胜, 赵英侠, 严振国. 足三里穴的显微结构. 中国针灸, 1999, 19(1): 27-28.
YU A S, ZHAO Y X, YAN Z G. Ultrastructure of Zusanli(ST 36) point. Chinese Acuponcture & Moxibustion, 1999, 19(1): 27-28. (in Chinese)
[27]
李永明. 针刺研究的困惑与假说(二): 从假说到循证针灸理论. 中国中西医结合杂志, 2019, 39(10): 1160-1165.
LI Y M. Puzzles and hypotheses of acupuncture (Ⅱ): From hypothesis to evidenced-based theory. Chinese Journal of Integrated Traditional and Western Medicine, 2019, 39(10): 1160-1165. (in Chinese)
[28]
李永明. 针刺研究的困惑与假说. 中国中西医结合杂志, 2013, 33(11): 1445-1448. doi:10.7661/CJIM.2013.11.1445.

doi: 10.7661/CJIM.2013.11.1445
LI Y M. Puzzles and hypotheses of acupuncture. Chinese Journal of Integrated Traditional and Western Medicine, 2013, 33(11): 1445- 1448. doi:10.7661/CJIM.2013.11.1445. (in Chinese)

doi: 10.7661/CJIM.2013.11.1445
[29]
汪丽, 张汝芝, 金慧玲. 特络细胞及其胞外囊泡与细胞间交流. 中国组织化学与细胞化学杂志, 2017, 26(1): 79-82. doi:10.16705/j.cnki.1004-1850.2017.01.015.

doi: 10.16705/j.cnki.1004-1850.2017.01.015
WANG L, ZHANG R Z, JIN H L. Telocytes, their extracellular vesicles and intercellular communication. Chinese Journal of Histochemistry and Cytochemistry, 2017, 26(1): 79-82. doi:10.16705/j.cnki.1004-1850.2017.01.015. (in Chinese)

doi: 10.16705/j.cnki.1004-1850.2017.01.015
[30]
FAUSSONE-PELLEGRINI M S, GHERGHICEANU M. Telocyte's contacts. Seminars in Cell & Developmental Biology, 2016, 55: 3-8. doi:10.1016/j.semcdb.2016.01.036.

doi: 10.1016/j.semcdb.2016.01.036
[31]
RUSU M C, NICOLESCU M I, JIANU A M, LIGHEZAN R, MĂNOIU V S, PĂDURARU D. Esophageal telocytes and hybrid morphologies. Cell Biology International, 2012, 36(12): 1079-1088. doi:10.1042/CBI20120007.

doi: 10.1042/CBI20120007 pmid: 22931066
[32]
CISMASIU V B, POPESCU L M. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. Journal of Cellular and Molecular Medicine, 2015, 19(2): 351-358. doi:10.1111/jcmm.12529.

doi: 10.1111/jcmm.12529 pmid: 25600068
[33]
CRETOIU S M, CRETOIU D, MARIN A, RADU B M, POPESCU L M. Telocytes: Ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction (Cambridge, England), 2013, 145(4): 357-370. doi:10.1530/REP-12-0369.

doi: 10.1530/REP-12-0369
[34]
LIAO Z F, CHEN Y L, DUAN C C, ZHU K K, HUANG R J, ZHAO H, HINTZE M, PU Q, YUAN Z Q, LV L C, CHEN H Y, LAI B L, FENG S S, QI X F, CAI D Q. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics, 2021, 11(1): 268-291. doi:10.7150/thno.47021.

doi: 10.7150/thno.47021
[35]
刘里远, 潘娟. 皮肤交感物质线组织学及毛囊立毛肌在经络实质中的动力靶器官作用. 北京师范大学学报(自然科学版), 2003, 39(6): 807-813. doi:10.3321/j.issn:0476-0301.2003.06.020.

doi: 10.3321/j.issn:0476-0301.2003.06.020
LIU L Y, PAN J. The histology of the skin sympathetic substance-line and the action of dynamic target organs of arrector pili muscles in essence of jinlo. Journal of Beijing Normal University (Natural Science), 2003, 39(6): 807-813. doi:10.3321/j.issn:0476-0301.2003.06.020. (in Chinese)

doi: 10.3321/j.issn:0476-0301.2003.06.020
[1] ZHAO WeiHong, HAN WenXiong, YANG Bo, MENG WeiKang, CHAI HaiLiang, MA YiMin, ZHANG ZhanSheng, WANG LiFeng, WANG Yan, WANG MingYuan, ZHANG Shan, DING YuLin, WANG JinLing, JIRINTAI Sulijid, WANG FengLong, ZHAO Li, LIU YongHong. Isolation and Genotyping of Mycobacterium avium subsp. paratuberculosis from Sheep in Inner Mongolia [J]. Scientia Agricultura Sinica, 2023, 56(6): 1204-1214.
[2] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[3] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[4] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[5] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[6] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[7] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[8] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[9] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[10] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[11] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[12] SHAO JingYi,LI XiaoFan,YU WeiZhen,LIU Peng,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Combined Effects of High Temperature and Drought on Yield and Stem Microstructure of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(17): 3623-3631.
[13] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[14] ZHUANG XinBo,CHEN YinJi,ZHOU GuangHong. The Mechanism of Myofibrillar Protein Gel Functionality Influenced by Modified Sugarcane Dietary Fiber [J]. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330.
[15] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!