Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (4): 797-809.doi: 10.3864/j.issn.0578-1752.2024.04.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

lncRNA-MSTRG.7889.1 Competitively Binds to bta-miR-146a Targeting Smad4 to Regulate Apoptosis of Yak Granulosa Cells

MENG ZhaoYi1(), WANG YunLu1(), YAO YiLong2, XI GuangYin3, NIU JiaQiang1, SOLANGSIZHU1, GUO Min3, XU YeFen1()   

  1. 1 College of Animal Sciences, Tibet Agriculture and Animal Husbandry College, Nyingchi 860000, Tibet
    2 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, Guangdong
    3 College of Animal Science and Technology, China Agricultural University, Beijing 100193
  • Received:2023-06-27 Accepted:2023-09-10 Online:2024-02-16 Published:2024-02-20
  • Contact: XU YeFen

Abstract:

【Background】 Apoptosis of granulosa cells (GCs) is an important cause of follicular atresia, and competing endogenous RNA mechanism has been proven to be involved in regulating the apoptosis process of GCs. The previous transcriptome sequencing study of yak ovary showed that lncRNA-MSTRG.7889.1 had binding sites with bta-miR-146a, while bta-miR-146a had a targeting relationship with Smad4. 【Objective】The aim of this experiment was to explore the molecular regulatory mechanisms of ceRNA that affected the apoptosis of follicular GCs in yak, so as to lay a foundation for revealing the mystery of the reproductive regulation of the yak.【Method】 Healthy and atretic follicles of adult female yaks were collected and isolated, and the expressions of lncRNA-MSTRG.7889.1, bta-miR-146a and Smad4 in follicles were detected by RT-qPCR. Healthy and atretic follicles were sliced, and GCs apoptosis in healthy and atretic follicles was detected by TUNEL. The localizations of lncRNA-MSTRG.7889.1, bta-miR-146a and Smad4 in follicles were analyzed by fluorescence in situ hybridization. The yak GCs were isolated and cultured in vitro, and transfected with Smad4 overexpression vector and bta-miR-146a mimics, respectively. The apoptosis rate of GCs cells was detected by flow cytometry, and the expressions of pro-apoptotic proteins CASPASE3 and BAX and anti-apoptotic proteins BCL-2 were detected by Western blot. After co-transfecting Smad4 overexpression vector and bta-miR-146a mimics with GCs, it was investigated whether bta-miR-146a targeting Smad4 affects GCs apoptosis in yaks. lncRNA-MSTRG.7889.1 overexpression lentiviral vector was used to infect GCs, and the effect of lncRNA-MSTRG.7889.1 on GCs apoptosis was detected by flow cytometry and Western blot. lncRNA-MSTRG.7889.1 vector and bta-miR-146a mimics were co-transfected with GCs to further analyze whether lncRNA-MSTRG.7889.1 competitive binding of bta-miR-146a targeting Smad4 affected the apoptosis of GCs in yaks. 【Result】 The expression of lncRNA-MSTRG.7889.1 and Smad4 gene mRNA in healthy yak follicles was significantly higher than that in atresia follicles (P<0.01), while the expression of bta-miR-146a was opposite (P<0.01). TUNEL test results showed that the fluorescence intensity of GCs in atretic follicles was significantly higher than that in healthy follicles (P<0.01), indicating that the apoptosis of GCs in atretic follicles was significantly higher than that in healthy follicles. The results of fluorescence in situ hybridization showed that Smad4, bta-miR-146a and lncRNA-MSTRG.7889.1 were co-expressed in the follicles of yaks, and their expressions in healthy and atretic follicles were basically consistent with the results of RT-qPCR, indicating that ceRNA mechanism might be involved in the development of healthy follicles and follicle atresia in yaks. Overexpression of Smad4 in yaks GCs significantly decreased the apoptosis rate of GCs (P<0.01), and the expressions of CASPASE3 and BAX protein were significantly decreased (P<0.01), while the expression of BCL-2 was significantly increased (P<0.01). Overexpression of bta-miR-146a significantly increased the apoptosis rate of GCs (P<0.01), increased the expressions of CASPASE3 and BAX proteins (P<0.01), and decreased the expression of BCL-2 (P<0.01). bta-miR-146a targeted inhibition of Smad4 expression (P<0.01); Smad4 and bta-miR-146a were co-transfected into GCs, and the results showed that bta-miR-146a targeted inhibition of Smad4 reduced the former's promoting effect on GCs apoptosis (P<0.01). Overexpression of lncRNA-MSTRG.7889.1 significantly decreased the apoptosis rate of GCs in yaks (P<0.01), the expressions of CASPASE3 and BAX protein were significantly decreased (P<0.01), and the expression of BCL-2 was significantly increased (P<0.01). lncRNA-MSTRG.7889.1 significantly inhibited the expression of bta-miR-146a (P<0.01). lncRNA-MSTRG.7889.1 and bta-miR-146a were co-transfected into GCs, and lncRNA-MSTRG.7889.1 targeting bta-miR-146a decreased the promotion effect of the latter on GCs apoptosis (P<0.01), and the results of RT-qPCR and Western blot showed that lncRNA-MSTRG7889.1 competitively bound bta-miR-146a to promote the expression of Smad4 gene at mRNA and protein levels (P<0.01). 【Conclusion】 lncRNA-MSTRG.7889.1 competitively binds to bta-miR-146a, promotes the expression of Smad4 and inhibits the apoptosis of yak GCs.

Key words: lncRNA, bta-miR-146a, apoptosis, granulosa cells, yak

Table 1

Primer probes pynthesis table"

引物名称
Primer
引物序列
Primer sequence (5′ to 3′)
片段大小
Fragment size (bp)
lnc-MSTRG.7889探针Probes 5′-Cy3-CATTGAGAAGGAAATGGTAACCCACTCTAGTGTTCTTGCCTGCAG-3′
Smad4探针Probes 5′-Cy3-CTCCAGGTGCACGCCCAGCTTCTCTGTCTAAGTAGTAGCTCTGTA-3′
bta-miR-146a探针Probes 5′-FAM- ACAACCTATGGAATTCAGTTCTCA-3′
Smad4
酶切引物Primer
F GAATTCCAATATGTCTATTACGAATACACCAACAAGTAATGATGCCTGTCT 1162
R AGATCTCGATGAAGTCCTTCACACCATGCCTATTGCCGACCCACAGCCT
Smad 4 F TACCAGAACAAAGGAGTATCGTT 148
R CGGTAAGATATTAGCTGGAGTGAC
bta-miR-146a F TGAGAACTGAATTCCATACCTTCT 98
R GCGAGCACAGAATTAATACGAC
lnc-MSTRG.7889 F TAGCAGGTGGGCAGTG 118
R TTTCAAATACCGCCAC
U6 F TCGCTTCGGCAGCACATATAC 102
R GCGAGCACAGAATTAATACGAC
β-actin F CCAACTGGGACGACATGGA 146
R GTCTCGAACATGATCTGGGTCAT

Fig. 1

Expression of Smad4, bta-miR-146a, and lnc-MSTRG.7889 in yak follicles A: RT-qPCR results; B: TUNEL method detection results; C: Expression of Smad4 and bta-miR-146a in follicles; D: Expression of lnc-MSTRG.7889 and bta-miR-146a in follicles; ** indicate significant difference (P<0.01). The same as below"

Fig. 2

bta-miR-146a targeting Smad4 affects apoptosis of yak GCs A: Smad4 affects the apoptosis rate of yak GCs; B: Smad4 affects the expression of apoptosis related proteins in GCs; C: bta-miR-146a affects the apoptosis rate of yak GCs; D: bta-miR-146a affects the expression of apoptosis related proteins in GCs; E: bta-miR-146a inhibits the expression of Smad4; F: bta-miR-146a targeting Smad4 affects the apoptosis rate of yak GCs; G: bta-miR-146a targeting Smad4 affects the expression of apoptosis related proteins in yak GCs; Different lowercase letters represent significant differences (P<0.05), and different uppercase letters represent extremely significant differences (P<0.01). The same as below"

Fig. 3

lnc-MSTRG.7889 inhibits bta-miR-146a and affects GCs apoptosis A: lnc-MSTRG.7889 affects the apoptosis rate of yak follicular GCs; B. lncRNA affects the expression of apoptosis related proteins in GCs; C: lnc-MSTRG.7889 in GCs affects the expression of bta-miR-146a; D: lnc-MSTRG.7889 and bta-miR-146a affect the apoptosis rate of yak follicular GCs; E: lnc-MSTRG.7889 and bta-miR-146a affect the expression of apoptosis related proteins in yak follicular GCs"

Fig. 4

lncRNA affects the expression of Smad4 by regulating bta-miR-146a A: The expression of Smad4 in GCs co-transfected with lncRNA overexpression vector and bta-miR-146a mimics; B: Western blot was used to detect the expression of SMAD4 protein in GCs co-transfected with lncRNA overexpression vector and bta-miR-146a mimics"

1 MANN G E. Reproduction in the yak. British Veterinary Journal, 1993, 149(6): 513-514.
[2]
EVANS A C O. Characteristics of ovarian follicle development in domestic animals. Reproduction in Domestic Animals, 2003, 38(4): 240-246.

pmid: 12887563
[3]
TIWARI M, PRASAD S, TRIPATHI A, PANDEY A N, ALI I, SINGH A K, SHRIVASTAV T G, CHAUBE S K. Apoptosis in mammalian oocytes: A review. Apoptosis, 2015, 20(8): 1019-1025.

doi: 10.1007/s10495-015-1136-y pmid: 25958165
[4]
MENG L, JAN S Z, HAMER G, VAN PELT A M, VAN DER STELT I, KEIJER J, TEERDS K J. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biology of Reproduction, 2018, 99(4): 853-863.

doi: 10.1093/biolre/ioy116 pmid: 29767707
[5]
GRILO A L, MANTALARIS A. Apoptosis: a mammalian cell bioprocessing perspective. Biotechnology Advances, 2019, 37(3): 459-475.

doi: 10.1016/j.biotechadv.2019.02.012
[6]
OBENG E. Apoptosis (programmed cell death) and its signals - A review. Brazilian Journal of Biology, 2021, 81(4): 1133-1143.

doi: 10.1590/1519-6984.228437 pmid: 33111928
[7]
MATSUDA F, INOUE N, MANABE N, OHKURA S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. The Journal of Reproduction and Development, 2012, 58(1): 44-50.

pmid: 22450284
[8]
GEBERT L F R, MACRAE I J. Regulation of microRNA function in animals. Nature Reviews Molecular Cell Biology, 2019, 20(1): 21-37.

doi: 10.1038/s41580-018-0045-7
[9]
MICHLEWSKI G, CÁCERES J F. Post-transcriptional control of miRNA biogenesis. RNA, 2019, 25(1): 1-16.

doi: 10.1261/rna.068692.118 pmid: 30333195
[10]
ZHANG J B, XU Y X, LIU H L, PAN Z X. microRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reproductive Biology and Endocrinology, 2019, 17(1): 9.

doi: 10.1186/s12958-018-0450-y pmid: 30630485
[11]
刘玉芳, 陈玉林, 周祖阳, 储明星.miR-221-3p靶向BCL2L11调控小尾寒羊卵泡颗粒细胞凋亡. 中国农业科学, 2022, 55(9): 1868-1876. doi: 10.3864/j.issn.0578-1752.2022.09.015.
LIU Y F, CHEN Y L, ZHOU Z Y, CHU M X.miR-221-3p regulates ovarian granulosa cells apoptosis by targeting BCL2L 11 in small-tail Han sheep. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876. doi: 10.3864/j.issn.0578-1752.2022.09.015. (in Chinese)
[12]
YAMAMURA S, IMAI-SUMIDA M, TANAKA Y, DAHIYA R. Interaction and cross-talk between non-coding RNAs. Cellular and Molecular Life Sciences, 2018, 75(3): 467-484.

doi: 10.1007/s00018-017-2626-6 pmid: 28840253
[13]
MA N N, TIE C R, YU B, ZHANG W, WAN J. Identifying lncRNA-miRNA-mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging, 2020, 12(3): 2897-2920.

doi: 10.18632/aging.v12i3
[14]
REN J Y, JIANG C J, ZHANG H, SHI X L, AI X, LI R Y, DONG J L, WANG J, ZHAO X H, YU H Q. LncRNA-mediated ceRNA networks provide novel potential biomarkers for peanut drought tolerance. Physiologia Plantarum, 2022, 174(1): e13610.

doi: 10.1111/ppl.v174.1
[15]
TUERSONG T, LI L L, ABULAITI Z, FENG S M. Comprehensive analysis of the aberrantly expressed lncRNA‑associated ceRNA network in breast cancer. Molecular Medicine Reports, 2019, 19(6): 4697-4710.

doi: 10.3892/mmr.2019.10165 pmid: 31059025
[16]
冉宏标, 赵丽玲, 王会, 柴志欣, 王吉坤, 王嘉博, 武志娟, 钟金城.LncFAM200B对牦牛肌内前体脂肪细胞脂质沉积的影响. 中国农业科学, 2022, 55(13): 2654-2666. doi: 10.3864/j.issn.0578-1752.2022. 13.014.
RAN H B, ZHAO L L, WANG H, CHAI Z X, WANG J K, WANG J B, WU Z J, ZHONG J C.Effects of lnc FAM200B on the lipid deposition in intramuscular preadipocytes of yak. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666. doi: 10.3864/j.issn.0578-1752.2022.13.014 (in Chinese)
[17]
王会, 柴志欣, 朱江江, 钟金城, 张成福, 信金伟.牦牛Linc24063的克隆鉴定及其与miRNAs表达水平的相关性分析. 中国农业科学, 2019, 52(14): 2538-2547. doi: 10.3864/j.issn.0578-1752.2019. 14.012.
WANG H, CHAI Z X, ZHU J J, ZHONG J C, ZHANG C F, XIN J W.Cloning and identification of long-chain non-coding RNA Linc24063 and its correlation with the expression level of miRNAs in yak. Scientia Agricultura Sinica, 2019, 52(14): 2538-2547. doi: 10.3864/ j.issn.0578-1752.2019.14.012. (in Chinese)
[18]
HAN X H, PAN Y Y, FAN J F, WANG M, WANG L B, WANG J L, AFEDO S Y, ZHAO L, WANG Y Y, ZHAO T, ZHANG T X, ZHANG R, CUI Y, YU S J. LncRNA MEG 3 regulates ASK1/JNK axis-mediated apoptosis and autophagy via sponging miR-23a in granulosa cells of yak tertiary follicles[J]. Cellular Signalling, 2023, 107: 110680.

doi: 10.1016/j.cellsig.2023.110680
[19]
LI M H, NIU M H, FENG Y Q, ZHANG S E, TANG S W, WANG J J, CAO H G, SHEN W. Establishment of lncRNA-mRNA network in bovine oocyte between germinal vesicle and metaphase II stage. Gene, 2021, 791: 145716.

doi: 10.1016/j.gene.2021.145716
[20]
LIU A J, LIU M H, LI Y X, CHEN X Y, ZHANG L M, TIAN S J. Differential expression and prediction of function of lncRNAs in the ovaries of low and high fecundity Hanper sheep. Reproduction in Domestic Animals, 2021, 56(4): 604-620.

doi: 10.1111/rda.13898 pmid: 33475207
[21]
YAO W, PAN Z X, DU X, ZHANG J B, LIU H L, LI Q F. NORHA, a novel follicular atresia-related lncRNA, promotes porcine granulosa cell apoptosis via the miR-183-96-182 cluster and FoxO1 axis. Journal of Animal Science and Biotechnology, 2021, 12(1): 103.

doi: 10.1186/s40104-021-00626-7 pmid: 34615552
[22]
YAO Y L, MENG Z Y, LI W C, XU Y F, WANG Y L, SUOLANG S Z, XI G Y, CAO L, GUO M. Profiling and functional analysis of long non-coding RNAs in yak healthy and atretic follicles. Animal Reproduction, 2022, 19(3): e20210131.

doi: 10.1590/1984-3143-ar2021-0131
[23]
牛家强, 王玉恒, 索朗斯珠, 强巴央宗, 徐业芬, 郭敏, 程玲华, 杨士承. 牦牛Smad 4基因3’UTR区双荧光素酶载体构建及与bta-miR-146a的靶向验证. 畜牧兽医学报, 2018, 49(7): 1366-1376.
NIU J Q, WANG Y H, SUOLANGSIZHU, QIANGBAYANGZONG, XU Y F, GUO M, CHENG L H, YANG S C. Construction of yak smad 4 gene 3’UTR dual-luciferase reporter vector and its targeting validation to bta-miR-146a. Chinese Journal of Animal and Veterinary Sciences, 2018, 49(7): 1366-1376. (in Chinese)
[24]
RODGERS R J, IRVING-RODGERS H F. Morphological classification of bovine ovarian follicles. Reproduction, 2010, 139(2): 309-318.

doi: 10.1530/REP-09-0177 pmid: 19786400
[25]
王玉恒, 索朗斯珠, 强巴央宗, 徐业芬, 牛家强, 姚一龙, 王英杰. 西藏林芝地区牦牛卵泡颗粒细胞体外分离培养和形态观察. 畜牧与兽医, 2018, 50(5): 12-14.
WANG Y H, SUOLANGSIZHU, QIANGBAYANGZONG, XU Y F, NIU J Q, YAO Y L, WANG Y J. Isolated culture and morphology of follicle granulosa cells in yak in the Nyingchi region of Tibet. Animal Husbandry & Veterinary Medicine, 2018, 50(5): 12-14. (in Chinese)
[26]
王运路, 孟朝轶, 姚一龙, 郭敏, 牛家强, 索朗斯珠, 徐业芬. 牦牛“海绵吸附”bta-miR-146a的lncRNA筛选及靶向验证. 中国畜牧兽医, 2023, 50(3): 859-869.

doi: 10.16431/j.cnki.1671-7236.2023.03.002
WANG Y L, MENG Z Y, YAO Y L, GUO M, NIU J Q, SUOLANGSIZHU, XU Y F.Screening and targeting verification of lncRNA of “sponge adsorption” bta-miR-146a in yak. China Animal Husbandry & Veterinary Medicine, 2023, 50(3): 859-869. (in Chinese)
[27]
WANG M M, WANG Y, YAO W, DU X, LI Q F. Lnc2300 is a cis-acting long noncoding RNA of CYP11A1 in ovarian granulosa cells. Journal of Cellular Physiology, 2022, 237(11): 4238-4250.

doi: 10.1002/jcp.30872 pmid: 36074900
[28]
PAN Y, YANG S F, CHENG J R, LV Q, XING Q H, ZHANG R M, LIANG J Y, SHI D S, DENG Y F. Whole-transcriptome analysis of LncRNAs mediated ceRNA regulation in granulosa cells isolated from healthy and atresia follicles of Chinese buffalo. Frontiers in Veterinary Science, 2021, 8: 680182.

doi: 10.3389/fvets.2021.680182
[29]
SUN L, ZHANG P J, LU W F. lncRNA MALAT 1 regulates mouse granulosa cell apoptosis and 17β-estradiol synthesis via regulating miR-205/CREB1 axis. BioMed Research International, 2021, 2021: 6671814.
[30]
DERYNCK R, ZHANG Y E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003, 425(6958): 577-584.

doi: 10.1038/nature02006
[31]
YU C, ZHANG Y L, FAN H Y. Selective Smad 4 knockout in ovarian preovulatory follicles results in multiple defects in ovulation. Molecular Endocrinology, 2013, 27(6): 966-978.

doi: 10.1210/me.2012-1364
[32]
MA X P, YI H S. BMP 15 regulates FSHR through TGF-β receptor II and SMAD4 signaling in prepubertal ovary of Rongchang pigs. Research in Veterinary Science, 2022, 143: 66-73.

doi: 10.1016/j.rvsc.2021.12.013
[33]
LI X Y, DU X, YAO W, PAN Z X, LI Q F. TGF-β/SMAD4 signaling pathway activates the HAS2-HA system to regulate granulosa cell state. Journal of Cellular Physiology, 2020, 235(3): 2260-2272.

doi: 10.1002/jcp.29134 pmid: 31489963
[34]
陈露露, 王会, 王吉坤, 王嘉博, 柴志欣, 陈智华, 钟金城. 藏黄牛与宣汉黄牛心脏miRNA表达谱比较. 中国农业科学, 2020, 53(8): 1677-1687. doi: 10.3864/j.issn.0578-1752.2020.08.016.
CHEN L L, WANG H, WANG J K, WANG J B, CHAI Z X, CHEN Z H, ZHONG J C. Comparative analysis of miRNA expression profiles in the hearts of Tibetan cattle and Xuanhan cattle. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687. doi: 10.3864/j.issn.0578-1752.2020. 08.016. (in Chinese)
[35]
陈慧芳, 黄绮亮, 胡智超, 潘晓婷, 吴志胜, 白银山. 外泌体microRNA在猪成熟和闭锁卵泡中的表达差异及功能分析. 中国农业科学, 2021, 54(21): 4664-4676. doi: 10.3864/j.issn.0578-1752.2021.21.005.
CHEN H F, HUANG Q L, HU Z C, PAN X T, WU Z S, BAI Y S. Expression differences and functional analysis of exosomes microRNA in porcine mature and atretic follicles. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676. doi: 10.3864/j.issn.0578-1752.2021. 21.005. (in Chinese)
[36]
YUAN H, LU J, XIAO S Y, HAN X Y, SONG X T, QI M Y, LIU G S, YANG C X, YAO Y C. miRNA expression analysis of the sheep follicle during the prerecruitment, dominant, and mature stages of development under FSH stimulation. Theriogenology, 2022, 181: 161-169.

doi: 10.1016/j.theriogenology.2022.01.001 pmid: 35101680
[37]
刘雪宁. 流体剪切应力通过调控miR-146a-5p/SMAD4信号轴抑制MC3T3-E1细胞凋亡[D]. 兰州: 兰州大学, 2022.
LIU X N.Fluid shear stress inhibits apoptosis of MC3T3-E 1 cells by regulating the signal axis of miR-146a-5p/SMAD4[D]. Lanzhou: Lanzhou University, 2022. (in Chinese)
[38]
SHAO J H, DING Z R, PENG J H, ZHOU R, LI L X, QIAN Q R, CHEN Y. miR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway. Inflammation Research, 2020, 69(6): 619-630.

doi: 10.1007/s00011-020-01346-w pmid: 32328683
[39]
ZHANG W W, SHAO M M, HE X J, WANG B J, LI Y C, GUO X Y. Overexpression of microRNA-146 protects against oxygen-glucose deprivation/recovery-induced cardiomyocyte apoptosis by inhibiting the NF-κB/TNF-α signaling pathway. Molecular Medicine Reports, 2018, 17(1): 1913-1918.

doi: 10.3892/mmr.2017.8073 pmid: 29257202
[40]
HE F P, LIU Y H, LI T, MA Q L, ZHANG Y M, HE P Q, XIONG C Y. microRNA-146 attenuates lipopolysaccharide induced ovarian dysfunction by inhibiting the TLR4/NF- κB signaling pathway. Bioengineered, 2022, 13(5): 11611-11623.

doi: 10.1080/21655979.2022.2070584 pmid: 35531876
[41]
TAY Y, RINN J, PANDOLFI P P. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505(7483): 344-352.

doi: 10.1038/nature12986
[42]
DU X, LIU L, LI Q Q, ZHANG L F, PAN Z X, LI Q F. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Communications Biology, 2020, 3(1): 131.

doi: 10.1038/s42003-020-0864-x pmid: 32188888
[43]
WU Y, XIAO H W, PI J S, ZHANG H, PAN A L, PU Y J, LIANG Z H, SHEN J, DU J P, HUANG T. LncRNA lnc_ 13814 promotes the cells apoptosis in granulosa cells of duck by acting as apla-miR-145-4 sponge. Cell Cycle, 2021, 20(9): 927-942.
[1] ZHANG HuaPeng, ZHANG QingZe, HE Fan, QI MengFan, FU BinBin, LI QingChun, LI MengXun, MA LiPeng, LIU Yi, HUANG Tao. Cloning and Identification of Differentially Expressed lncRNAs in Follicles of Meishan Pigs and Duroc Pigs with Their Correlation Analysis with miRNAs [J]. Scientia Agricultura Sinica, 2024, 57(9): 1807-1819.
[2] WANG SiQi, ZHOU ChunXue, LI YuQi, DU Xing, PAN ZengXiang, LI QiFa. miR-34a Induces Early Apoptosis of Porcine Ovarian Granulosa Cells by Activating lncRNA NORHA Transcription [J]. Scientia Agricultura Sinica, 2024, 57(5): 1000-1009.
[3] ZHANG Peng, WANG MingXiu, JING KeMin, LI YuQian, TIAN Yuan, ZHONG JinCheng, CAI Xin. Cloning of PLZF Gene and Its Effects on the Proliferation of Undifferentiated Spermatogonia in Cattleyak [J]. Scientia Agricultura Sinica, 2024, 57(2): 390-402.
[4] WANG JinPeng, LUORENG ZhuoMa, LI YanXia, FENG Fen, WANG ZhengXing, PAN ChuanYing, LAN XianYong, WANG XingPing. The Function of lncRNA RRAS2-AS1 in LPS Induced Bovine Mammary Epithelial Cells Inflammation [J]. Scientia Agricultura Sinica, 2024, 57(14): 2874-2888.
[5] PAN YangYang, WANG JingLei, WANG Meng, WANG LiBin, ZHANG Qian, CHEN Rui, ZHANG TianTian, CUI Yan, XU GengQuan, FAN JiangFeng, YU SiJiu. Formation and Function of Paraspeckle During Pre-implantation Embryos Development in Yak [J]. Scientia Agricultura Sinica, 2023, 56(6): 1189-1203.
[6] TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen. Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells [J]. Scientia Agricultura Sinica, 2023, 56(3): 549-558.
[7] GUO ZeYuan, DU ZhangSheng, ZHANG YaQi, CHEN ChunLu, MA XiaoYan, CHENG Ying, WANG Kai, LÜ LiHua. Effects of Smad7-Mediated TGF-β Signaling Pathway on Proliferation of Sheep Granulosa Cells [J]. Scientia Agricultura Sinica, 2023, 56(13): 2597-2608.
[8] LI JiRong, LIU Xin, WANG Jun, CAO XiaoGang, CI Dun. Fractionation Effect of Stable Carbon and Nitrogen Isotope Ratios in Yak Dairy Products Processing [J]. Scientia Agricultura Sinica, 2023, 56(10): 1982-1993.
[9] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[10] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[11] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[12] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[13] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[14] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[15] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!