Scientia Agricultura Sinica

Previous Articles    

Genetic diversity analysis and comprehensive evaluation of sorghum breeding materials based on phenotypic traits

ZHANG YiZhong1,2, ZHANG XiaoJuan1,2, LIANG Du1,2, GUO Qi1,2, FAN XinQi1,2, NIE MengEn3, WANG HuiYan1,2, ZHAO WenBo1,2, LIU QingShan2*, DU WeiJun4* #br#   

  1. 1Sorghum Research Institute, Shanxi Agricultural University/Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Yuci 030600, Shanxi; 2State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Taiyuan 030031; 3Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031; 4College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Published:2023-05-22

Abstract: ObjectiveThe present study analyzed the genetic variation of phenotypic traits and genetic diversity of sorghum breeding materials. Additionally, the study explored a comprehensive method for the evaluation of germplasm materials and screening of excellent sorghum germplasm to provide an important basis for sorghum germplasm innovation and variety selection.MethodIn total, 263 sorghum germplasms from different sources were used as the test materials, and 17 phenotypic traits were identified under different environments for two years. Genetic diversity of the phenotypic traits was calculated based on the Shannon-weaver information diversity index. The sorghum germplasms were comprehensively evaluated using the correlation analysis, principal component analysis, cluster analysis, and stepwise regression. Excellent sorghum germplasms were screened according to the phenotypic comprehensive evaluation value (F value) and target traits.ResultSorghum breeding materials exhibited high genetic diversity. The diversity index distribution of different traits ranged from 0.497 to 2.075, with the diversity index of spike shape being the smallest and that of spike stalk length being the largest. The coefficient of variation of seven plant height, stem diameter, panicle length, panicle stalk length, grain weight per spike, thousand grain weight, period of duration varied in different years; the smallest variation was observed in the period of duration, followed by the panicle stalk length, whereas the largest variation was observed in stem diameter, followed by plant height. A comprehensive evaluation of the breeding materials showed that when the cumulative contribution percentage was >80%, the number of the total principal components was 11. F value of the sorghum breeding materials was calculated using the membership function method. The average F value was found to be 0.464, with the restorer line L28 having the highest F value (0.581) and the maintainer line 72B/DORADO having the lowest the F value (0.330). Through stepwise regression, a regression equation was established, with 12 traits (main vein color, ear type, ear shape, awn character, glume coating degree, grain shape, plant type, stem diameter, ear length, grain weight per ear, 1000-grain weight, and growth period) as independent variables. The equation could be used for a comprehensive evaluation of the phenotypic traits of breeding materials of sorghum breeding materials. Based on F value clustering, 263 materials were divided into six groups. Among these, 34 materials in group Ⅲ exhibited excellent agronomic characteristics and high F value, which could be used as parent materials for material innovation and cross breeding.ConclusionSorghum phenotypic traits exhibit rich genetic variation and high genetic diversity. A total of 34 excellent germplasms were obtained. Using multivariate statistical analysis is a feasible approach to comprehensively evaluate sorghum germplasm.


Key words: Sorghum, phenotypic traits, genetic diversity, comprehensive evaluation

[1] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[2] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[3] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[4] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[5] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[6] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[7] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[8] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[9] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[10] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[11] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[12] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[13] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[14] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[15] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!