Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (7): 1322-1332.doi: 10.3864/j.issn.0578-1752.2023.07.010

• PLANT PROTECTION • Previous Articles     Next Articles

Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea

SHAO HongYang(), MENG Xiang(), ZHANG Tao, CHEN Min()   

  1. College of Forestry, Beijing Forestry University/Beijing Key Laboratory for Forest Pest Control, Beijing 100083
  • Received:2022-12-20 Accepted:2023-01-31 Online:2023-04-01 Published:2023-04-03

Abstract:

【Objective】 The objective of this study is to clarify the differentially expressed cytochrome P450 genes and phylogenetic relationships in response to quercetin in Hyphantria cunea, and to explore the dosage effect of cytochrome P450 genes in response to quercetin, and the role of cytochrome P450 genes in detoxification adaptation to quercetin in H. cunea.【Method】 Based on the transcriptome data of quercetin-induced midgut of H. cunea, the significantly differentially expressed cytochrome P450 genes were screened. MEGA X software was used to analyze the phylogenetic relationships of the target genes with cytochrome P450 genes of other related species. RT-qPCR was used to detect the expression of the five cytochrome P450 genes in different quercetin concentrations (0.5%, 1.0%, 2.0% and 4.0%). The full-length cDNA sequence of CYP6ZB2 was cloned, and the effect of CYP6ZB2 gene-silenced on the body weight and survival rate of H. cunea was investigated by RNA interference (RNAi) technique.【Result】 Five cytochrome P450 genes were identified from the differentially expressed genes in the transcriptome, and were named CYP4G296, CYP4G297, CYP333A30, CYP304F33 and CYP6ZB2 by Standardized Cytochrome P450 Nomenclature Committee (GenBank accession numbers: ON032363-ON032367). Phylogenetic tree analysis showed that these five genes were divided into four clades (CYP2, CYP3, CYP4 and the mitochondrial CYP clade). RT-qPCR results showed that cytochrome P450 genes had a significant dosage effect in response to quercetin, and the expressions of CYP4G297, CYP304F33, CYP333A30 and CYP4G296 were inhibited by different concentrations of quercetin. The expression of CYP6ZB2 was significantly increased at 0.5%-2.0% concentration of quercetin, but it was significantly inhibited at 4.0% quercetin. The full-length cDNA sequence of CYP6ZB2 was cloned. CYP6ZB2 had a complete open reading frame (ORF) encoding 500 amino acids. RNAi results showed that the expression level of CYP6ZB2 was significantly inhibited by injection of two doses (500 and 1 000 ng) dsCYP6ZB2, and the maximum reduction in CYP6ZB2 expression level was 96.9% after injection of 1 000 ng dsCYP6ZB2 for 48 h. The weight increase of CYP6ZB2 gene-silenced H. cunea larvae fed on 0.5% quercetin was lower than that of the control group. Furthermore, the survival rate (53.33%) was 61.5% of that of the untreated group and 72.7% of that of the ddH2O group (P<0.05).【Conclusion】 Five cytochrome P450 genes were identified in the transcriptome data of quercetin-induced midgut of H. cunea, and quercetin had a significant dosage effect on the five genes, indicating that the response patterns of different cytochrome P450 genes to quercetin were different. RNAi can significantly inhibit the expression level of CYP6ZB2, and quercetin has a significant negative impact on the growth of H. cunea, suggesting that CYP6ZB2 plays an important role in quercetin detoxification in H. cunea.

Key words: Hyphantria cunea, quercetin, cytochrome P450, expression analysis, RNA interference (RNAi), gene function

Table 1

Primer sequences of RT-qPCR, gene cloning and dsRNA synthesis"

基因名称
Gene name
引物序列
Primer sequence
扩增效率
Amplification efficiency (%)
相关系数
Correlation coefficient
引物用途
Primer usage
CYP4G296 F-CGACTCAGATCGCCCAGTAA
R-TAACAGGCACTGGTGGGAAC
99.2 0.995 RT-qPCR
CYP4G297 F-ACAACAGTAGTGATTGCCACG
R-TCGGGCAGGAAATTATCAGGA
106.4 0.997 RT-qPCR
CYP333A30 F-GGTGGCTATCACATCCCTCC
R-TCGCCCGCGGATAATACTTT
91.4 0.984 RT-qPCR
CYP304F33 F-AACTTACGCTCGCCAGACAA
R-TGCAGGCTTCAGTAATGGCT
99.9 0.988 RT-qPCR
CYP6ZB2 F-ACCCGAGAAATTTGACCCAGA
R-TACACACACGCCGAATTGGA
103.5 0.993 RT-qPCR
GAPDH F-GACTGGCATGGCTTTCAGAG
R-CATCGTAGCTAGCGGGTTTG
96.5 0.999 RT-qPCR
EF1-α F-TTATCGTCGCTGCTGGTACT
R-GAGTGTGAAAGCGAGCAGAG
103.5 0.999 RT-qPCR
CYP6ZB2 F-ATGTCGGCTTTCTTACTGCTGT
R-TTAGATTGGTATAAAATTGAGATATATGTCT
基因克隆
Gene cloning
dsCYP6ZB2 F-TAATACGACTCACTATAGGG ATGTCGGCTTTCTTACTGCTGT
R-TAATACGACTCACTATAGGGTTAGATTGGTATAAAATTGAGATATATGTCT
dsRNA合成
dsRNA synthesis

Table 2

BLASTX results of cytochrome P450 genes in response to quercetin induction"

基因名称Gene name 登录号
Accession
number
转录水平
Transcription level
编码蛋白长度
Encoded
protein length (aa)
Best B<BOLD>LASTX</BOLD> match
蛋白质名称
Protein name
物种
Species
E值
E-value
一致性
Identity (%)
登录号
Accession number
CYP4G296 ON032363 Down (12%) 362 Cytochrome P450 CYP4G 黑肾卷裙夜蛾
Plecoptera oculata
0 90.11 QFS21543.1
CYP4G297 ON032364 Down (5%) 146 Cytochrome P450 CYP4G 美国白蛾
H. cunea
6e-173 100.00 BBD13397.1
CYP333A30 ON032365 Down (24%) 507 Cytochrome P450 CYP12A2-like 粉纹夜蛾
T. ni
0 63.85 XP_026734554.1
CYP304F33 ON032366 Down (25%) 289 CYP15C1 大豆夜蛾
Anticarsia gemmatalis
3e-179 79.29 UBY12684.1
CYP6ZB2 ON032367 Up (2.69倍
2.69 times)
500 Cytochrome P450 6B6-like 棉铃虫
H. armigera
8e-171 51.65 XP_021201217.1

Fig. 1

Phylogenetic tree of cytochrome P450 genes of H. cunea and other insects Different colors represent different cytochrome P450 gene clades. The red font genes represent the five cytochrome P450 genes identified in this study. The number at tree node represents bootstrap value from 1000 replicates"

Fig. 2

Relative expression levels of five cytochrome P450 genes of H. cunea after induction with different concentrations of quercetin for 24 h (A-E) and validation of RT-qPCR results by RNA-seq data (F)"

Fig. 3

Relative expression level of CYP6ZB2 at 48 h (A) and 96 h (B) after injection of dsCYP6ZB2"

Fig. 4

Effects of 0.5% quercetin on the weight increase of CYP6ZB2 gene-silenced H. cunea larvae Different letters on the bars indicate significant difference within group analysis (P<0.05)"

Fig. 5

Effect of 0.5% quercetin on the survival rate of CYP6ZB2 gene-silenced H. cunea larvae Different letters on the bars indicate significant difference (P<0.05)"

[1]
MOJARAB-MAHBOUBKAR M, SENDI J J, MAHMOODI N. The sweet wormwood essential oil and its two major constituents are promising for a safe control measure against fall webworm. Pesticide Biochemistry and Physiology, 2022, 184: 105124. doi: 10.1016/j.pestbp.2022.105124.

doi: 10.1016/j.pestbp.2022.105124
[2]
NING J, LU P F, FAN J T, REN L L, ZHAO L L. American fall webworm in China: A new case of global biological invasions. The Innovation, 2022, 3(1): 100201. doi: 10.1016/j.xinn.2021.100201.

doi: 10.1016/j.xinn.2021.100201
[3]
蒋立娣, 宣贵达, 吴好好, 李丽萍. 桑叶提取物中槲皮素和山萘酚的含量测定. 浙江大学学报(理学版), 2009, 36(6): 705-707, 713. doi: 10.3785/j.issn.1008-9497.2009.06.023.

doi: 10.3785/j.issn.1008-9497.2009.06.023
JIANG L D, XUAN G D, WU H H, LI L P. Determination of quercetin and kaempferol in folium mori extract after hydrolysis by hydrochloric acid. Journal of Zhejiang University (Science Edition), 2009, 36(6): 705-707, 713. doi: 10.3785/j.issn.1008-9497.2009.06.023. (in Chinese)

doi: 10.3785/j.issn.1008-9497.2009.06.023
[4]
WANG Z Y, NUR F A, MA J Y, WANG J G, CAO C W. Effects of poplar secondary metabolites on performance and detoxification enzyme activity of Lymantria dispar. Comparative Biochemistry and Physiology, Part C, 2019, 225: 108587. doi: 10.1016/j.cbpc.2019.108587.

doi: 10.1016/j.cbpc.2019.108587
[5]
赖城玲, 张珺, 申屠旭萍, 郝培应, 庞琨, 俞晓平. 植物次生代谢物对植食性昆虫防御作用的研究进展. 应用昆虫学报, 2022, 59(5): 969-978. doi: 10.7679/j.issn.2095-1353.2022.100.

doi: 10.7679/j.issn.2095-1353.2022.100
LAI C L, ZHANG J, SHENTU X P, HAO P Y, PANG K, YU X P. Review of how secondary metabolites defend plants against herbivorous insects. Chinese Journal of Applied Entomology, 2022, 59(5): 969-978. doi: 10.7679/j.issn.2095-1353.2022.100. (in Chinese)

doi: 10.7679/j.issn.2095-1353.2022.100
[6]
HAFEEZ M, LIU S S, YOUSAF H K, JAN S, WANG R L, FERNÁNDEZ-GRANDON G M, LI X W, GULZAR A, ALI B, REHMAN M, ALI S, FAHAD M, LU Y B, WANG M. RNA interference-mediated knockdown of a cytochrome P450 gene enhanced the toxicity of α-cypermethrin in xanthotoxin-fed larvae of Spodoptera exigua (Hübner). Pesticide Biochemistry and Physiology, 2020, 162: 6-14. doi: 10.1016/j.pestbp.2019.07.003.

doi: 10.1016/j.pestbp.2019.07.003
[7]
YU H Z, WEN D F, WANG W L, GENG L, ZHANG Y, XU J P. Identification of genes putatively involved in chitin metabolism and insecticide detoxification in the rice leaf folder (Cnaphalocrocis medinalis) larvae through transcriptomic analysis. International Journal of Molecular Sciences, 2015, 16(9): 21873-21896. doi: 10.3390/ijms160921873.

doi: 10.3390/ijms160921873
[8]
陈高满, 陈展博, 葛辉, 杨雪清, 王小奇. 苹果蠹蛾细胞色素P450基因CYP332A19CYP337B19的克隆及表达分析. 昆虫学报, 2020, 63(8): 941-951. doi: 10.16380/j.kcxb.2020.08.004.

doi: 10.16380/j.kcxb.2020.08.004
CHEN G M, CHEN Z B, GE H, YANG X Q, WANG X Q. Cloning and expression analysis of cytochrome P450 genes CYP332A19 and CYP337B19 in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Acta Entomologica Sinica, 2020, 63(8): 941-951. doi: 10.16380/j.kcxb.2020.08.004. (in Chinese)

doi: 10.16380/j.kcxb.2020.08.004
[9]
FEYEREISEN R. Evolution of insect P450. Biochemical Society Transactions, 2006, 34(6): 1252-1255. doi: 10.1042/BST0341252.

doi: 10.1042/BST0341252
[10]
YU L Y, TANG W Q, HE W Y, MA X L, VASSEUR L, BAXTER S W, YANG G, HUANG S G, SONG F Q, YOU M S. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.). Scientific Reports, 2015, 5: 8952. doi: 10.1038/srep08952.

doi: 10.1038/srep08952
[11]
AMEZIAN D, NAUEN R, GOFF G L. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. Insect Biochemistry and Molecular Biology, 2021, 138: 103646. doi: 10.1016/j.ibmb.2021.103646.

doi: 10.1016/j.ibmb.2021.103646
[12]
WANG R L, LIU S W, BAERSON S R, QIN Z, MA Z H, SU Y J, ZHANG J E. Identification and functional analysis of a novel cytochrome P450 gene CYP9A105 associated with pyrethroid detoxification in Spodoptera exigua Hübner. International Journal of Molecular Sciences, 2018, 19(3): 737. doi: 10.3390/ijms19030737.

doi: 10.3390/ijms19030737
[13]
潘忠玉. 3种次生代谢物对美国白蛾幼虫生长发育及解毒酶活性的影响[D]. 北京: 北京林业大学, 2020.
PAN Z Y. Effects of three secondary metabolites on the growth and development and detoxification enzyme activities in Hyphantria cunea (Lepidoptera: Arctiidae)[D]. Beijing: Beijing Forestry University, 2020. (in Chinese)
[14]
王海燕, 杨金龙, 谷山林, 王小燕, 王介平, 周婵, 吕金凤, 曾秀. 桑叶槲皮素提取物抗氧化活性研究. 丝绸, 2018, 55(3): 15-20. doi: 10.3969/j.issn.1001-7003.2018.03.003.

doi: 10.3969/j.issn.1001-7003.2018.03.003
WANG H Y, YANG J L, GU S L, WANG X Y, WANG J P, ZHOU C, J F, ZENG X. Study on antioxidant activity of quercetin extract from mulberry leaves. Journal of Silk, 2018, 55(3): 15-20. doi: 10.3969/j.issn.1001-7003.2018.03.003. (in Chinese)

doi: 10.3969/j.issn.1001-7003.2018.03.003
[15]
孙莲, 孟磊, 陈坚, 马季, 胡瑞, 贾殿增. 毛细管电泳法测定桑叶中的黄酮类成分——芦丁和槲皮素. 色谱, 2001, 19(5): 395-397.
SUN L, MENG L, CHEN J, MA J, HU R, JIA D Z. Determination of rutin and quercetin in mulberry leaves by high performance capillary electrophoresis. Chinese Journal of Chromatography, 2001, 19(5): 395-397. (in Chinese)
[16]
曹利军, 杨帆, 唐思莹, 陈敏. 适合三种鳞翅目昆虫的一种人工饲料配方. 应用昆虫学报, 2014, 51(5): 1376-1386. doi: 10.7679/j.issn.2095-1353.2014.165.

doi: 10.7679/j.issn.2095-1353.2014.165
CAO L J, YANG F, TANG S Y, CHEN M. Development of an artificial diet for three lepidopteran insects. Chinese Journal of Applied Entomology, 2014, 51(5): 1376-1386. doi: 10.7679/j.issn.2095-1353.2014.165. (in Chinese)

doi: 10.7679/j.issn.2095-1353.2014.165
[17]
ZHANG D, GAO F L, JAKOVLIĆ I, ZOU H, ZHANG J, LI W X, WANG G T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 2020, 20(1): 348-355. doi: 10.1111/1755-0998.13096.

doi: 10.1111/1755-0998.13096 pmid: 31599058
[18]
GUINDON S, DUFAYARD J F, LEFORT V, ANISIMOVA M, HORDIJK W, GASCUEL O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 2010, 59(3): 307-321. doi: 10.1093/sysbio/syq010.

doi: 10.1093/sysbio/syq010 pmid: 20525638
[19]
MINH B Q, NGUYEN M A, VON HAESELER A. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 2013, 30(5): 1188-1195. doi: 10.1093/molbev/mst024.

doi: 10.1093/molbev/mst024 pmid: 23418397
[20]
陶蓉, 李慧, 孙宇航, 于晓航, 朱晗, 郝德君. 美国白蛾内参基因的鉴定及筛选. 林业科学, 2019, 55(9): 111-120. doi: 10.11707/j.1001-7488.20190912.

doi: 10.11707/j.1001-7488.20190912
TAO R, LI H, SUN Y H, YU X H, ZHU H, HAO D J. Identification and screening of internal reference genes of Hyphantria cunea (Lepidoptera: Arctiidae). Scientia Silvae Sinicae, 2019, 55(9): 111-120. doi: 10.11707/j.1001-7488.20190912. (in Chinese)

doi: 10.11707/j.1001-7488.20190912
[21]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262.

doi: 10.1006/meth.2001.1262
[22]
尹飞, 李振宇, SAMINA S, 林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析. 中国农业科学, 2022, 55(13): 2562-2571. doi: 10.3864/j.issn.0578-1752.2022.13.007.

doi: 10.3864/j.issn.0578-1752.2022.13.007
YIN F, LI Z Y, SAMINA S, LIN Q S. Expression and function analysis of cytochrome P450 genes in Plutella xylostella with different chlorantraniliprole resistance. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571. doi: 10.3864/j.issn.0578-1752.2022.13.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.13.007
[23]
WANG R L, XIA Q Q, BAERSON S R, REN Y, WANG J, SU Y J, ZHENG S C, ZENG R S. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification. Journal of Insect Physiology, 2015, 75: 54-62. doi: 10.1016/j.jinsphys.2015.02.013.

doi: 10.1016/j.jinsphys.2015.02.013
[24]
LIU X N, LIANG P, GAO X W, SHI X Y. Induction of the cytochrome P450 activity by plant allelochemicals in the cotton bollworm, Helicoverpa armigera (Hübner). Pesticide Biochemistry and Physiology, 2006, 84(2): 127-134. doi:10.1016/j.pestbp.2005.06.002.

doi: 10.1016/j.pestbp.2005.06.002
[25]
HAFEEZ M, QASIM M, ALI S, YOUSAF H K, WAQAS M, ALI E, AHMAD M A, JAN S, BASHIR M A, NOMAN A, WANG M, GHARMH H A, KHAN K A. Expression and functional analysis of P450 gene induced tolerance/resistance to lambda-cyhalothrin in quercetin fed larvae of beet armyworm Spodoptera exigua (Hübner). Saudi Journal of Biological Sciences, 2020, 27(1): 77-87. doi: 10.1016/j.sjbs.2019.05.005.

doi: 10.1016/j.sjbs.2019.05.005
[26]
LI B, ZHANG H, NI M, WANG B B, LI F C, XU K Z, SHEN W D, XIA Q Y, ZHAO P. Identification and characterization of six cytochrome P450 genes belonging to CYP4 and CYP6 gene families in the silkworm, Bombyx mori. Molecular Biology Reports, 2014, 41(8): 5135-5146. doi: 10.1007/s11033-014-3379-z.

doi: 10.1007/s11033-014-3379-z
[27]
KATSAVOU E, RIGA M, IOANNIDIS P, KING R, ZIMMER C T, VONTAS J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. Pesticide Biochemistry and Physiology, 2021, 181: 105005. doi: 10.1016/j.pestbp.2021.105005.

doi: 10.1016/j.pestbp.2021.105005
[28]
JIN M, LIAO C, FU X, HOLDBROOK R, WU K, XIAO Y. Adaptive regulation of detoxification enzymes in Helicoverpa armigera to different host plants. Insect Molecular Biology, 2019, 28(5): 628-636. doi: 10.1111/imb.12578.

doi: 10.1111/imb.12578
[29]
LI H, JIANG W H, ZHANG Z, XING Y R, LI F. Transcriptome analysis and screening for potential target genes for RNAi-mediated pest control of the beet armyworm, Spodoptera exigua. PLoS ONE, 2013, 8(6): e65931. doi: 10.1371/journal.pone.0065931.

doi: 10.1371/journal.pone.0065931
[30]
CHEN C Y, HAN P, YAN W Y, WANG S Y, SHI X Y, ZHOU X G, DESNEUX N, GAO X W. Uptake of quercetin reduces larval sensitivity to lambda-cyhalothrin in Helicoverpa armigera. Journal of Pest Science, 2018, 91(2): 919-926. doi: 10.1007/s10340-017-0933-1.

doi: 10.1007/s10340-017-0933-1
[31]
HUVENNE H, SMAGGHE G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. Journal of Insect Physiology, 2010, 56(3): 227-235. doi: 10.1016/j.jinsphys.2009.10.004.

doi: 10.1016/j.jinsphys.2009.10.004 pmid: 19837076
[32]
LIU S H, DING Z P, ZHANG C W, YANG B J, LIU Z W. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 2010, 40(9): 666-671. doi: 10.1016/j.ibmb.2010.06.007.

doi: 10.1016/j.ibmb.2010.06.007
[1] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[2] WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit [J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
[3] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[4] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[5] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[6] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[7] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[8] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[9] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[10] SHI Xin,LI Sha,WANG ZhiMin,FU KaiYun,FU WenJun,JIANG WeiHua. Resistance Monitoring to Thiamethoxam and Expression Analysis of Cytochrome P450 Genes in Leptinotarsa decemlineata from Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(14): 3004-3016.
[11] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
[12] LI Jie,LUO JiangHong,YANG Ping. Research Advances of Applying Virus-Induced Gene Silencing in Vegetables [J]. Scientia Agricultura Sinica, 2021, 54(10): 2154-2166.
[13] LU BaoShun,ZHU YongJing,ZHANG ShuTing,LÜ YuMeng,LI XiaoFei,SONG YuYang,LAI ZhongXiong,LIN YuLing. Whole-Genome Identification and Expression Analysis of SPL Gene Family in Dimocarpus Longan [J]. Scientia Agricultura Sinica, 2020, 53(20): 4259-4270.
[14] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[15] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!